casparian strip
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 17)

H-INDEX

20
(FIVE YEARS 3)

eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
Andreas Kolbeck ◽  
Peter Marhavý ◽  
Damien De Bellis ◽  
Baohai Li ◽  
Takehiro Kamiya ◽  
...  

Efficient uptake of nutrients in both animal and plant cells requires tissue-spanning diffusion barriers separating inner tissues from the outer lumen/soil. However, we poorly understand how such contiguous three-dimensional superstructures are formed in plants. Here, we show that correct establishment of the plant Casparian Strip (CS) network relies on local neighbor communication. We show that positioning of Casparian Strip membrane domains (CSDs) is tightly coordinated between neighbors in wild-type and that restriction of domain formation involves the putative extracellular protease LOTR1. Impaired domain restriction in lotr1 leads to fully functional CSDs at ectopic positions, forming 'half strips'. LOTR1 action in the endodermis requires its expression in the stele. LOTR1 endodermal expression cannot complement, while cortex expression causes a dominant-negative phenotype. Our findings establish LOTR1 as a crucial player in CSD positioning acting in a directional, non-cell-autonomous manner to restrict and coordinate CS positioning.


2021 ◽  
Author(s):  
Sam David Cook ◽  
Seisuke Kimura ◽  
Qi Wu ◽  
Rochus Franke ◽  
Takehiro Kamiya ◽  
...  

The biological function of the auxin phenylacetic acid (PAA) is not well characterized in plants. Although some aspects of its biology; transport, signaling and metabolism have recently been described. Previous work on this phytohormone has suggested that PAA behaves in an identical manner to IAA (indole-3-acetic acid) in promoting plant growth, yet plants require greater concentrations of PAA to elicit the same physiological responses. Here we show that normalized PAA treatment results in the differential expression of a unique list of genes, suggesting that plants can respond differently to the two auxins. This is further explored in endodermal barrier regulation where the two auxins invoke striking differences in the deposition patterns of suberin. We further show that auxin acts antagonistically on Casparian strip (CS) formation as it can circumvent the CS transcriptional machinery to repress CS related genes. Additionally, altered suberin biosynthesis reduces endogenous levels of PAA and CS deficiency represses the biosynthesis of IAA and the levels of both auxins. These findings implicate auxin as a regulator of endodermal barrier formation and highlight a novel role for PAA in root development and differentiation.


2021 ◽  
Vol 22 (11) ◽  
pp. 6002
Author(s):  
Zhigang Wang ◽  
Zhiwei Chen ◽  
Xiang Zhang ◽  
Qiuxing Wei ◽  
Yafeng Xin ◽  
...  

The Casparian strip domain protein 1 (OsCASP1) is necessary for the formation of the Casparian strip (CS) in the rice endodermis. It also controls Ca2+ transport to the stele. Here, we demonstrated that OsCASP1 overexpression enhanced Ca tolerance in rice. Under normal conditions, OsCASP1-overexpressed lines showed similar concentrations of essential metals in the roots and shoots compared to the wild type, while under high Ca conditions, Ca in the roots, shoots, and xylem sap of the OsCASP1-overexpressed lines was significantly decreased. This did not apply to other essential metals. Ca-inhibited growth was significantly alleviated in the OsCASP1-overexpressed lines. Furthermore, OsCASP1 overexpression resulted in earlier formation of both the CS and functional apoplastic barrier in the endodermis but did not induce ectopic CS formation in non-endodermal cell layers and affect suberin accumulation in the endodermis. These results indicate that the overexpression of OsCASP1 promotes CS formation in endodermal cells and inhibits Ca2+ transport by the apoplastic pathway, restricting Ca accumulation in the roots and shoots under high Ca conditions. Taken together, the results suggest that OsCASP1 overexpression is an effective way to improve rice adaptation to high Ca environments.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Guilhem Reyt ◽  
Priya Ramakrishna ◽  
Isai Salas-González ◽  
Satoshi Fujita ◽  
Ashley Love ◽  
...  

AbstractLignin is a complex polymer deposited in the cell wall of specialised plant cells, where it provides essential cellular functions. Plants coordinate timing, location, abundance and composition of lignin deposition in response to endogenous and exogenous cues. In roots, a fine band of lignin, the Casparian strip encircles endodermal cells. This forms an extracellular barrier to solutes and water and plays a critical role in maintaining nutrient homeostasis. A signalling pathway senses the integrity of this diffusion barrier and can induce over-lignification to compensate for barrier defects. Here, we report that activation of this endodermal sensing mechanism triggers a transcriptional reprogramming strongly inducing the phenylpropanoid pathway and immune signaling. This leads to deposition of compensatory lignin that is chemically distinct from Casparian strip lignin. We also report that a complete loss of endodermal lignification drastically impacts mineral nutrients homeostasis and plant growth.


Author(s):  
Guilhem Reyt ◽  
Priya Ramakrishna ◽  
Isai Salas-González ◽  
Satoshi Fujita ◽  
Ashley Love ◽  
...  

ABSTRACTLignin is a complex polymer precisely deposited in the cell wall of specialised plant cells, where it provides essential cellular functions. Plants coordinate timing, location, abundance and composition of lignin deposition in response to endogenous and exogenous cues. In roots, a fine band of lignin, the Casparian strip encircles endodermal cells. This forms an extracellular barrier to solutes and water and plays a critical role in maintaining nutrient homeostasis. A signalling pathway senses the integrity of this diffusion barrier and can induce over-lignification to compensate for barrier defects. Here, we report that activation of this endodermal sensing mechanism triggers a transcriptional reprogramming strongly inducing the phenylpropanoid pathway and immune signaling. This leads to deposition of compensatory lignin that is chemically distinct from Casparian strip lignin. We also report that a complete loss of endodermal lignification drastically impacts mineral nutrients homeostasis and plant growth.


2020 ◽  
Vol 30 (20) ◽  
pp. R1273-R1275
Author(s):  
Dorothee Stöckle ◽  
Joop EM. Vermeer

2020 ◽  
Vol 48 (3) ◽  
pp. 1573-1584
Author(s):  
Jie LUO ◽  
Long-Yi YUAN

Cercis glabra is a colour-leaf tree with excellent ornamental value, whereas its physiological and morphological responses to waterlogging stress are still unclear. A potted study was conducted to determine the effects of waterlogging stress on antioxidative enzymes (superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT)), lipid peroxidation (in terms of malondialdehyde (MDA) content), relative electric conductivity, and osmotic substance (free proline) of leaves and aerenchyma, lignification, suberization and Casparian strip of lateral roots of C. glabra. The result showed that the SOD, POD, and CAT activity and free proline content of C. glabra were significantly increased by the different degrees of waterlogging stress compared with the non-waterlogged treatment at 8 and 12 days, and the MDA content and relative electric conductivity of C. glabra leaves were significantly increased under the different degrees of waterlogging stress compared to the non-waterlogged treatment at 16 days, and the degrees of change increased among treatments was ranked as total waterlogged > semi-waterlogged > shallow waterlogged. The lateral roots of C. glabra not only formed developed aerenchyma in the cortex but also formed suberization and Casparian strip in the endodermis under semi-waterlogged treatment at 16 days. These results implied that C. glabra had a certain tolerance to waterlogging stress, which was associated with the increasing antioxidant enzyme activity and osmotic adjustment substance content, and with the formation of aerenchyma, suberization and Casparian strip in the lateral root to adapt to the waterlogged environment.


2020 ◽  
Author(s):  
Andreas Kolbeck ◽  
Peter Marhavý ◽  
Damien De Bellis ◽  
Lothar Kalmbach ◽  
Niko Geldner

SummaryEfficient uptake of nutrients in both animal and plant cells requires tissue-spanning diffusion barriers separating inner tissues from the outer lumen/soil. However, we poorly understand how these contiguous three-dimensional superstructures are formed in plants. Here, we show that correct establishment of the plant Casparian Strip (CS) network requires neighbor communication. We show that positioning of Casparian Strip membrane domains (CSDs) is tightly coordinated between neighbors in wild-type and that restriction of domain formation involves the putative extracellular protease LOTR1. Impaired domain restriction in lotr1 is associated with disrupted CSDs and establishment of fully functional CSD at ectopic positions, forming “half strips”. LOTR1 is expressed in stele and needs to be expressed there. Endodermal expression, by contrast, cannot complement, while cortex expression causes a dominant-negative phenotype. Our findings establish LOTR1 as a crucial player in CSD positioning acting in a non-cell-autonomous pathway to restrict and coordinate CS positioning.


2020 ◽  
Author(s):  
Jeong Im Kim ◽  
Christopher Hidalgo-Shrestha ◽  
Nicholas D. Bonawitz ◽  
Rochus B. Franke ◽  
Clint Chapple

ABSTRACTCinnamate 4-hydroxylase (C4H) is a cytochrome P450-dependent monooxygenase that catalyzes the second step of the general phenylpropanoid pathway. Arabidopsis reduced epidermal fluorescence 3 (ref3) mutants, which carry hypomorphic mutations in C4H, exhibit global alterations in phenylpropanoid biosynthesis and have developmental abnormalities including dwarfing. Here we report the characterization of a conditional Arabidopsis C4H line (ref3-2pOpC4H), in which wild-type C4H is expressed in the ref3-2 background. Expression of C4H in plants with well-developed primary inflorescence stems resulted in restoration of fertility and the production of substantial amounts of lignin, revealing that the developmental window for lignification is remarkably plastic. Following induction of C4H expression in ref3-2pOpC4H, we observed rapid and significant reductions in the levels of numerous metabolites, including several benzoyl and cinnamoyl esters and amino acid conjugates. These atypical conjugates were quickly replaced with their sinapoylated equivalents, suggesting that phenolic esters are subjected to substantial amounts of turnover in wild-type plants. Furthermore, using localized application of dexamethasone to ref3-2pOpC4H, we show that phenylpropanoids are not transported appreciably from their site of synthesis. Finally, we identified a defective Casparian strip diffusion barrier in the ref3-2 mutant root endodermis, which is restored by induction of C4H expression.HighlightThe work presented this paper provides evidence of metabolite turnover, plasticity of the developmental window for lignification, and the impact of reduced and restored cinnamate-4-hydroxylase (C4H) expression on the Casparian strip.


Sign in / Sign up

Export Citation Format

Share Document