scholarly journals The Starburst in the Nucleus of NGC 6764: The Near-IR/Radio/Optical Connection

1994 ◽  
Vol 140 ◽  
pp. 349-350
Author(s):  
Murray Cameron ◽  
Andreas Eckart ◽  
Reinhard Genzel ◽  
Naomasa Nakai ◽  
Stefan Wagner

Knowledge of the distribution and excitation of gas close to the nuclei of starburst galaxies is an essential element in the construction of models dealing with intense, but short-lived, star forming events. Building a comprehensive picture of the concentrations of various gaseous components in such regions calls for a multi-wavelength approach: the principal cooling lines of cold (T≤200K) molecular gas fall in the millimetre waveband, those of hot (T~1−3×103K) excited molecular material in the near-IR, and those pinpointing starburst activity in the optical. In many cases the extents of the emitting regions are on the order of only a few arcseconds.As part of such a study into the relationship between various near- and circum- nuclear gaseous components in starburst galaxies, we have obtained data on NGC 6764, a barred spiral classified as a LINER, at resolutions of 1″−4″ across the optical, near-infrared and millimetre wavelength regimes. In a previous paper (Eckart et al. 1991) we discussed extensive single dish millimetre and JHK near-IR measurements of the nucleus and disk of NGC 6764. Here we present new near-IR observations obtained with the MPE FAST instrument (Rotaciuc et al. 1991) at the William Herschel Telescope, along with 2″ resolution 12CO J=1-0 (115 GHz) interferometry measured with the Nobeyama millimeter array and 1″ optical spectroscopy from the 3.5m Calar Alto telescope.

2020 ◽  
Vol 640 ◽  
pp. L8 ◽  
Author(s):  
Hideki Umehata ◽  
Ian Smail ◽  
A. M. Swinbank ◽  
Kotaro Kohno ◽  
Yoichi Tamura ◽  
...  

Deep surveys with the Atacama Large Millimeter Array (ALMA) have uncovered a population of dusty star-forming galaxies which are faint or even undetected at optical to near-infrared wavelengths. Their faintness at short wavelengths makes the detailed characterization of the population challenging. Here we present a spectroscopic redshift identification and a characterization of one of these near-infrared-dark galaxies discovered by an ALMA deep survey. The detection of [C I](1–0) and CO(4–3) emission lines determines the precise redshift of the galaxy, ADF22.A2, to be z = 3.9913 ± 0.0008. On the basis of a multi-wavelength analysis, ADF22.A2 is found to be a massive, star-forming galaxy with a stellar mass of M∗ = 1.1−0.6+1.3 × 1011 M⊙ and SFR = 430−150+230 M⊙ yr−1. The molecular gas mass was derived to be M(H2)[CI] = (5.9 ± 1.5)×1010 M⊙, indicating a gas fraction of ≈35%, and the ratios of L[CI](1−0)/LIR and L[CI](1−0)/LCO(4−3) suggest that the nature of the interstellar medium in ADF22.A2 is in accordance with those of other bright submillimeter galaxies. The properties of ADF22.A2, including the redshift, star-formation rate, stellar mass, and depletion time scale (τdep ≈ 0.1−0.2 Gyr), also suggest that ADF22.A2 has the characteristics expected for the progenitors of quiescent galaxies at z ≳ 3. Our results demonstrate the power of ALMA contiguous mapping and line scan, which help us to obtain an unbiased view of galaxy formation in the early Universe.


2019 ◽  
Vol 632 ◽  
pp. A98 ◽  
Author(s):  
Antonello Calabrò ◽  
Emanuele Daddi ◽  
Jérémy Fensch ◽  
Frédéric Bournaud ◽  
Anna Cibinel ◽  
...  

While the formation of stellar clumps in distant galaxies is usually attributed to gravitational violent disk instabilities, we show here that major mergers also represent a competitive mechanism to form bright clumps. Using ∼0.1″ resolution ACS F814W images in the entire COSMOS field, we measured the fraction of clumpy emission in 109 main sequence (MS) and 79 Herschel-detected starbursts (off-MS) galaxies at 0.5 < z < 0.9, representative of normal versus merger induced star-forming activity, respectively. We additionally identify merger samples from visual inspection and from Gini-M20 morphological parameters. Regardless of the merger criteria adopted, the clumpiness distribution of merging systems is different from that of normal isolated disks at a > 99.5% confidence level. The former reaches higher clumpiness values up to 20% of the total galaxy emission. We confirm the merger induced clumpiness enhancement with novel hydrodynamical simulations of colliding galaxies with gas fractions typical of z ∼ 0.7. Multi-wavelength images of three starbursts in the CANDELS field support the young nature of clumps, which are likely merger products rather than older preexisting structures. Finally, for a subset of 19 starbursts with existing near-infrared rest frame spectroscopy, we find that the clumpiness is mildly anti-correlated with the merger phase, which decreases toward final coalescence. Our result can explain recent ALMA detections of clumps in hyperluminous high-z starbursts, while normal objects are smooth. This work raises a question as to the role of mergers on the origin of clumps in high redshift galaxies in general.


2010 ◽  
Vol 6 (S275) ◽  
pp. 294-298 ◽  
Author(s):  
Pieter van Oers ◽  
Sera Markoff

AbstractGRS 1915+105 is a very peculiar black hole binary that exhibits accretion-related states that are not observed in any other stellar-mass black hole system. One of these states, however – referred to as the plateau state – may be related to the canonical hard state of black hole X-ray binaries. Both the plateau and hard state are associated with steady, relatively lower X-ray emission and flat/inverted radio emission, that is sometimes resolved into compact, self-absorbed jets. To investigate the relationship between the plateau and the hard state, we fit two multi-wavelength observations using a steady-state outflow-dominated model, developed for hard state black hole binaries. The data sets consist of quasi-simultaneous observations in radio, near-infrared and X-ray bands. Interestingly, we find both significant differences between the two plateau states, as well as between the best-fit model parameters and those representative of the hard state. We discuss our interpretation of these results, and the possible implications for GRS 1915+105's relationship to canonical black hole candidates.


2006 ◽  
Vol 2 (S235) ◽  
pp. 315-315
Author(s):  
C. Kehrig ◽  
J. M. Vílchez ◽  
E. Telles ◽  
F. Cuisinier ◽  
E. Pérez-Montero

AbstractWe present a detailed spectroscopic study of a sample of 34 star-forming dwarf galaxies, ranging from the blue to near-infrared (λ3700Å-1μm) (Kehrig et al. 2006). The metal enrichment in this kind of objects has been operating typically at low metallicity enviroments. The spectra were observed with the 1.52m telescope at La Silla/ESO. We derive fundamental parameters for HII regions and ionizing sources in our star-forming galaxies, as well as gaseous metal abundances. All the spectra include the nebular[SIII]λλ9069,9532Å lines, that are of crucial importance in the derivation of the S/H abundances, and relevant ionization diagnostics. We study the relative hardness of their ionizing sources using the η' parameter (Vílchez & Pagel 1988), and exploring the roles played by metallicity and age. The ionic and total O/H was also derived using direct determinations of the te[OIII]. The mean S/O ratio derived in this work is constant and slightly below the solar (S/O)⊙ value (see fig 1). The data presented here are consistent with the conclusion that S/O remains constant as O/H varies among the sample of HII galaxies. Variations in S/O along the whole O/H abundance range may be present, but the scatter in S/O (due mainly to observational errors) is still large to constrain them. The assumption that the S/O ratio remains constant for all abundances is still an open question and should be explored further (Pérez-Montero et al. 2006).


2012 ◽  
Vol 8 (S292) ◽  
pp. 337-337
Author(s):  
S. M. Randriamampandry ◽  
S. M. Crawford ◽  
C. M. Cress ◽  
K. M. Hess ◽  
E. Giovannoli ◽  
...  

AbstractWe carry out a multi-wavelength analysis of star forming galaxies in the massive cluster MS0451.6-0305 at z∼0.54 to shed light on the evolution of the far-infrared-radio relationship in rich clusters. We have performed Spectral Energy Distribution (SED) fitting of IRAC 3.6μ, IRAC 4.5μ and MIPS 24μ photometry from Spitzer to derive the total infrared bolometric luminosity of spectroscopically confirmed cluster members with radio counterparts. The radio flux densities were measured from deep Very Large Array (VLA) radio continuum observations. The relationship between the infrared and radio luminosities for our sources show the strong correlation found between these two parameters for star forming galaxies. The far-infrared to radio luminosity ratio (qIR) values measured for these sources are comparable to those measured in low redshift clusters and indicative of an excess of radio emission.


2014 ◽  
Vol 10 (S309) ◽  
pp. 243-246
Author(s):  
Eva Wuyts ◽  

AbstractThe KMOS3D survey will provide near-IR IFU observations of a mass-selected sample of ∼600 star-forming galaxies at 0.7<z<2.7 with the K-band Multi Object Spectrograph (KMOS) at the VLT. We present kinematic results for a first sample of ∼200 galaxies, focusing on the evolution of the gas velocity dispersion with redshift. Combined with existing measurements, we find an approximate (1+z) evolution from z∼4 to the present day, which can be understood from the co-evolution of the gas fraction and specific star formation rate (sSFR) in the the equilibrium picture of galaxy evolution.We combine the KMOS3D sample with data from the LUCI and SINFONI spectrographs, as well as multi-wavelength HST imaging from CANDELS, to address the relations between stellar mass, SFR, and the [N II]/Hα flux ratio as an indicator of gas-phase metallicity for a sample of 222 star-forming galaxies. We find a constant slope at the low-mass end of the mass-metallicity relation and can fully describe its redshift evolution through the evolution of the characteristic turnover mass where the relation begins to flatten at the asymptotic metallicity. At a fixed mass and redshift, our data do not show a correlation between the [N II]/Hα ratio and SFR.


2019 ◽  
Vol 625 ◽  
pp. A96 ◽  
Author(s):  
Rüdiger Kneissl ◽  
Maria del Carmen Polletta ◽  
Clement Martinache ◽  
Ryley Hill ◽  
Benjamin Clarenc ◽  
...  

Galaxy clusters at high redshift are key targets for understanding matter assembly in the early Universe, yet they are challenging to locate. A sample of more than 2000 high-z candidate structures has been found using Planck’s all-sky submillimetre maps, and a sub-set of 234 have been followed up with Herschel-SPIRE, which showed that the emission can be attributed to large overdensities of dusty star-forming galaxies. As a next step, we need to resolve and characterise the individual galaxies giving rise to the emission seen by Planck and Herschel, and to find out whether they constitute the progenitors of present-day, massive galaxy clusters. Thus, we targeted the eight brightest Herschel-SPIRE sources in the centre of the Planck peak PLCK G073.4−57.5 using ALMA at 1.3 mm, and complemented these observations with multi-wavelength data from Spitzer-IRAC, CFHT-WIRCam in the J and Ks bands, and JCMT’s SCUBA-2 instrument. We detected a total of 18 millimetre galaxies brighter than 0.3 mJy within the 2.4 arcmin2 ALMA pointings, corresponding to an ALMA source density 8–30 times higher than average background estimates and larger than seen in typical “proto-cluster” fields. We were able to match all but one of the ALMA sources to a near infrared (NIR) counterpart. The four most significant SCUBA-2 sources are not included in the ALMA pointings, but we find an 8σ stacking detection of the ALMA sources in the SCUBA-2 map at 850 μm. We derive photometric redshifts, infrared (IR) luminosities, star-formation rates (SFRs), stellar masses (ℳ), dust temperatures, and dust masses for all of the ALMA galaxies. Photometric redshifts identify two groups each of five sources, concentrated around z  ≃  1.5 and 2.4. The two groups show two “red sequences”, that is similar near-IR [3.6]  −  [4.5] colours and different J  −  Ks colours. The majority of the ALMA-detected galaxies are on the SFR versus ℳ main sequence (MS), and half of the sample is more massive than the characteristic ℳ* at the corresponding redshift. We find that the z  ≃  1.5 group has total SFR = 840−100+120 M⊙ yr−1 and ℳ = 5.8−2.4+1.7 × 1011 M⊙, and that the z  ≃  2.4 group has SFR = 1020−170+310 M⊙ yr−1 and ℳ = 4.2−2.1+1.5 × 1011 M⊙, but the latter group is more scattered in stellar mass and around the MS. Serendipitous CO line detections in two of the galaxies appear to match their photometric redshifts at z  =  1.54. We performed an analysis of star-formation efficiencies (SFEs) and CO- and mm-continuum-derived gas fractions of our ALMA sources, combined with a sample of 1 <  z <  3 cluster and proto-cluster members, and observed trends in both quantities with respect to stellar masses and in comparison to field galaxies.


2006 ◽  
Vol 2 (S238) ◽  
pp. 365-366
Author(s):  
David Floyd ◽  
Marco Chiaberge ◽  
Eric S. Perlman ◽  
Bill Sparks ◽  
F. Duccio Macchetto ◽  
...  

AbstractThe 3CR catalogue provides a statistical sampling of the most powerful radio galaxies out to z ∼ 0.3. Over the decade and a half of Hubble observations we have amassed a major multi-wavelength dataset on these sources, discovering amongst other things, new jets, hotspots, dust disks, and faint point-like nuclei. We present here the results of our latest snapshot survey, a near-complete sampling of the 3CR host galaxies at z < 0.3 in the near-IR (H-band). This un-extinguished view of the host galaxies has provided us with an accurate measure of the stellar/spheroid masses of the sources, and an unbiased view of their morphologies. We show that they exhibit an identical Kormendy relation to nearby QSO's and the massive Elliptical population, but are distinct from the Brightest Cluster Members, and mergers. We find that while a few sources exhibit signs of a recent or impending major merger, many more sources have remnants consistent with a gas-rich minor merger in their recent history. We detect unresolved nuclear sources in most (∼80%) of FRI, with their IR luminosities correlating linearly with radio core power. This implies that the IR nuclei are synchrotron radiation produced at the base of the relativistic jet, and confirms that no infrared (thermal) radiation in excess to synchrotron is present in FRIs, unlike in other classes of AGN.


2020 ◽  
Vol 92 (2) ◽  
pp. 20101
Author(s):  
Behnam Kheyraddini Mousavi ◽  
Morteza Rezaei Talarposhti ◽  
Farshid Karbassian ◽  
Arash Kheyraddini Mousavi

Metal-assisted chemical etching (MACE) is applied for fabrication of silicon nanowires (SiNWs). We have shown the effect of amorphous sheath of SiNWs by treating the nanowires with SF6 and the resulting reduction of absorption bandwidth, i.e. making SiNWs semi-transparent in near-infrared (IR). For the first time, by treating the fabricated SiNWs with copper containing HF∕H2O2∕H2O solution, we have generated crystalline nanowires with broader light absorption spectrum, up to λ = 1 μm. Both the absorption and photo-luminescence (PL) of the SiNWs are observed from visible to IR wavelengths. It is found that the SiNWs have PL at visible and near Infrared wavelengths, which may infer presence of mechanisms such as forbidden gap transitions other can involvement of plasmonic resonances. Non-radiative recombination of excitons is one of the reasons behind absorption of SiNWs. Also, on the dielectric metal interface, the absorption mechanism can be due to plasmonic dissipation or plasmon-assisted generation of excitons in the indirect band-gap material. Comparison between nanowires with and without metallic nanoparticles has revealed the effect of nanoparticles on absorption enhancement. The broader near IR absorption, paves the way for applications like hyperthermia of cancer while the optical transition in near IR also facilitates harvesting electromagnetic energy at a broad spectrum from visible to IR.


Sign in / Sign up

Export Citation Format

Share Document