scholarly journals 6.1 The Zodiacal Light

1976 ◽  
Vol 31 ◽  
pp. 475-477
Author(s):  
H. Elsässer

As one of the most important results of what we heard in these days I consider the density law of interplanetary dust derived from zodiacal light observations by the deep space probes going out to Jupiter and going in to 0.3 AU. The dependence on the distance to the sun R seems to be nearly as R-1. This finding is in agreement with a new discussion of ground based observations which was reported by Dumont. The density law was one of the open questions for a long time; for me this represents a break-through.

1980 ◽  
Vol 90 ◽  
pp. 45-48
Author(s):  
H. Tanabe ◽  
A. Takechi ◽  
A. Miyashita

Measurement of the position of the photometric axis of the zodiacal light at large elongations (90 ° < λ − λ⊙ < 270°; λ:ecliptic longitude, λ⊙: ecliptic longitude of the sun) provides information about the spatial distribution of the interplanetary dust outside the orbit of the Earth. However, modern photoelectric measurements in this part are scarce, except for the Gegenschein region, because of the observational difficulty due to faintness of this part of the zodiacal light.


1991 ◽  
Vol 126 ◽  
pp. 131-138
Author(s):  
A.C. Levasseur-Regourd ◽  
J.B. Renard ◽  
R. Dumont

AbstractThe physical properties of the interplanetary dust grains are, out of the ecliptic plane, mainly derived from observations of zodiacal light in the visual or infrared domains. The bulk optical properties (polarization, albedo) of the grains are demonstrated to depend upon their distance to the Sun (at least in a 0.1 AU to 1.7 AU range in the symmetry plane) and upon the inclination of their orbits (at least up to 22°). Classical models assuming the homogeneity of the zodiacal cloud are no longer acceptable. A hybrid model, with a mixture of two populations, is proposed. It suggests that various sources (periodic comets, asteroids, non periodic comets...) play an important role in the replenishment of the zodiacal cloud complex.


1996 ◽  
Vol 150 ◽  
pp. 315-320
Author(s):  
I. Mann

AbstractYielding the inner continuation of the interplanetary dust cloud, the dust at about 0.3 AU and closer to the Sun is studied under observing conditions different from those of the Zodiacal light. The F-coronal brightness indicates its optical particle properties as well as its overall spatial distribution. The present knowledge is based on visible and near infrared F-coronal observations and may be improved from data of the SOHO satellite in the near future. Some dynamical effects become particulary important for sub-μm particles in the solar vicinity. However, these particles seem to have only a small effect on the observable corona brightness, but are more accessible to in-situ experiments.


1989 ◽  
Vol 8 ◽  
pp. 267-272
Author(s):  
S. S. Hong ◽  
S. M. Kwon

AbstractAnalyses of both the zodiacal light in the visible and the zodiacal emission in the infrared have provided us with ample evidence to claim that the interplanetary dust particles are mixtures or coagulations of more than one constituents and their mixing ratios vary with the distance from the sun.


1996 ◽  
Vol 150 ◽  
pp. 329-332
Author(s):  
J.B. Renard ◽  
R Dumont ◽  
A.C. Levasseur-Regourd ◽  
E. Hadamcik

AbstractThe ability of the Earth to trap interplanetary grains into a dust ring lying along the terrestrial orbit was shown by numerical simulations and confirmed by infrared observations (IRAS, COBE). Such a ring could have its signature on the elongation dependence of the zodiacal brightness along the ecliptic, especially near 90° of the Sun. Indeed, the elongation dependence observed at Tenerife by Dumont and Sanchez (1975) shows that the space density of interplanetary dust slightly increases with increasing heliocentric distance, within the 2 or 3 hundredths of AU approaching Earth's orbit.


1976 ◽  
Vol 31 ◽  
pp. 135-139
Author(s):  
R.H. Giese ◽  
E. Grün

Increased sophistication in both, direct impact detectors and zodiacal light measurements encourages to discuss the compatibility of the results obtained by these quite different methods of investigating interplanetary dust. Taking recent measurements of particle fluxes and velocities obtained by the space missions of Pioneer 8/9 (Berg and Grün 1973), Heos 2 (Hoffmann et al. 1975), and comparing them with submicron-sized craters on lunar surface samples (Schneider et al. 1973, Fechtig et al. 1974) there seem to be two types of interplanetary dust populations: larger (>10−12g) micrometeorites orbiting around the sun as the classical zodiacal dust cloud and a second component of very small (<10−12g) particles coming radially from the direction of the sun with high velocities (>50 km/s). On the basis of the flux data referred to above and adopting for both components velocities of 10 or 50 km/s relative to the detector, respectively, a differential distribution function n(a) · da was found for the particle radii (a) as shown at a logarithmic scale in fig. 1. A density of 3 g/cm3was adopted in order to convert particle masses into radii. The regions A, B, C (see Table 1) correspond approximately to the regimes of “submicron particles”, the classical zodiacal cloud particles, and the meteoritic component of the interplanetary dust complex. From this information the brightness I(ε) of the zodiacal light in the ecliptic plane can be computed as a function of elongation by approximating the distribution function n(a) in the different regions by simple power laws a−k·da and by adopting a resonable scattering function σ(θ) for the average scattering behaviour of one particle of the mixture depending on the scattering angle θ. By use of an inverse (v = 1) decrease of particle number densities n = no· r−vwith solar distance r(AU), where nois the number density at r=1 AU, one obtains with a particle size distribution law n(a)da ~ a−kda in the different intervals of sizes (Table 1) the intensity of the zodiacal light (in stars of 10th magnitude per square degree, S10) as shown in fig. 2. The two models (Maximum, Minimum) correspond to an upper and to a lower limit of particle number densities compatible with the in situ measurements, respectively.


2020 ◽  
Vol 183 ◽  
pp. 104527 ◽  
Author(s):  
E. Hadamcik ◽  
J. Lasue ◽  
A.C. Levasseur-Regourd ◽  
J.-B. Renard

2021 ◽  
Author(s):  
George Datseris ◽  
Bjorn Stevens

&lt;p&gt;Radiation measurements at the top of the atmosphere show that the two hemispheres of Earth reflect the same amount of shortwave radiation in the long time average (so-called hemispheric albedo symmetry). Here we try to find the origin of this symmetry by analyzing radiation data directly, as well as cloud properties. The radiation data, while being mostly noise, hint that a hemispheric communication mechanism is likely but do not provide enough information to identify it. Cloud properties allow us to define an effective cloud albedo field, much more useful than the commonly used cloud area fraction. Based on that we first show that extra cloud albedo of the SH exactly compensates the extra surface albedo of the NH. We then identify that this this compensation comes almost exclusively from the storm tracks of the extratropics. We close discussing the importance of approaching planetary albedo as a whole and open questions that remain.&lt;/p&gt;


Author(s):  
Joanna D. Haigh ◽  
Peter Cargill

This chapter looks at how the Sun varies in terms of its emissions of radiation and particles and how these changes might be associated with variations in weather and climate on Earth. Investigations of climate variability and climate change depend crucially on the existence, length, and quality of meteorological records. Ideally, records would consist of long time series of measurements made by well-calibrated instruments densely situated across the globe. For longer periods, and in remote regions, records have to be reconstructed from indirect indicators of climate known as proxy data. The chapter introduces one well-established technique for providing proxy climate data: dendrochronology, or the study of the successive annual growth rings of trees.


Sign in / Sign up

Export Citation Format

Share Document