scholarly journals Note on the Definition of the International Atomic Time Tai

1991 ◽  
Vol 127 ◽  
pp. 293-295
Author(s):  
Z.X. Li

AbstractRelations among the three concepts (TAI, coordinate time, and proper time)are discussed and comments of the definition of the TAI are given.

1986 ◽  
Vol 114 ◽  
pp. 297-297
Author(s):  
B. Guinot

The International Atomic Time TAI is a realized time scale which is ultimately used for comparisons between the observations and dynamical theories. Its definition should tell us unambiguously what an ideal TAI should be. It is also important know the uncertainties of the implementation of this definition.Concerning the definition, there is an apparent divergence between the physicists for whom TAI is a coordinate-time and the astronomers who often consider it as a proper time. This matter should be clarified and it might be advisable that IAU adopts a recommendation on this topic, based on the already existing CCDS and CCIR definitions, but completed for the specific uses in astronomy. The present TAI definition refers to the geoid. Some years will elapse before the tidal effects be observable. Nevertheless, it is desirable to have some exchanges of views on an improved definition.The accuracy (conformity with the definition), stability and precision of reading of TAI are progressively improving. Present and past properties will be briefly reported.


2009 ◽  
Vol 5 (S261) ◽  
pp. 95-101
Author(s):  
E. Felicitas Arias

AbstractTwo atomic time scales maintained at the International Bureau of Weights and Measures (BIPM) are realizations of terrestrial time: International Atomic Time (TAI) and TT(BIPM). They are calculated from atomic clocks realizing proper time in national laboratories. The algorithm for the calculation of TAI has been designed to optimize the frequency stability and accuracy of the time scale. Plans for the future improvement of the reference time scales are presented.


1995 ◽  
Vol 04 (01) ◽  
pp. 105-113 ◽  
Author(s):  
V. PERVUSHIN ◽  
T. TOWMASJAN

We show that the first principles of quantization and the experience of relativistic quantum mechanics can lead to the definition of observable time in quantum cosmology as a global quantity which coincides with the constrained action of the reduced theory up to the energy factor. The latter is fixed by the correspondence principle once one considers the limit of the “dust filled” Universe. The “global time” interpolates between the proper time for dust dominance and the conformal time for radiation dominance.


2021 ◽  
pp. 56-66
Author(s):  
Nikolay N. Vasilyuk ◽  
Alexander P. Chervonkin

The problem of the synchronization of onboard clocks of navigation satellites has considered from a relativistic point of view using the concept of “coordinate simultaneity”. This concept allows an unambiguous interpretation of the synchronization results within the framework of general relativity. The algorithm of intersatellite measurements processing has formulated in terms of a proper time of a space vehicle and the coordinate time of a reference frame. Rules of transformation between coordinate and proper time scales have indicated. An analytical expression has obtained for the periodic relativistic correction to the estimated value of the relative clock drift. This correction has expressed in terms of the coordinate time of a ground observer. The value of this correction exceeds the acceptable synchronization error and should be taken into account for the inter-satellite measurements processing. The error of the relativistic correction determination has calculated. This error provides an upper limit for the period of uploading of ephemeris data on the board of the space vehicle.


2020 ◽  
Vol 35 (30) ◽  
pp. 2050249
Author(s):  
Monimala Mondal ◽  
Parthapratim Pradhan ◽  
Farook Rahaman ◽  
Indrani Karar

We derive proper time Lyapunov exponent [Formula: see text] and coordinate time Lyapunov exponent [Formula: see text] for a regular Hayward class of black hole. The proper time corresponds to [Formula: see text] and the coordinate time corresponds to [Formula: see text], where [Formula: see text] is measured by the asymptotic observers both for Hayward black hole and for special case of Schwarzschild black hole. We compute their ratio as [Formula: see text] for time-like geodesics. In the limit of [Formula: see text] that means for Schwarzschild black hole this ratio reduces to [Formula: see text]. Using Lyapunov exponent, we investigate the stability and instability of equatorial circular geodesics. By evaluating the Lyapunov exponent, which is the inverse of the instability time scale, we show that, in the eikonal limit, the real and imaginary parts of quasi-normal modes (QNMs) is specified by the frequency and instability time scale of the null circular geodesics. Furthermore, we discuss the unstable photon sphere and radius of shadow for this class of black hole.


Universe ◽  
2020 ◽  
Vol 7 (1) ◽  
pp. 4
Author(s):  
Don Koks

Ever since Eddington’s analysis of the gravitational redshift a century ago, and the arguments in the relativity community that it produced, fine details of the roles of proper time and coordinate time in the redshift remain somewhat obscure. We shed light on these roles by appealing to the physics of the uniformly accelerated frame, in which coordinate time and proper time are well defined and easy to understand; and because that frame exists in flat spacetime, special relativity is sufficient to analyse it. We conclude that Eddington’s analysis was indeed correct—as was the 1980 analysis of his detractors, Earman and Glymour, who (it turns out) were following a different route. We also use the uniformly accelerated frame to pronounce invalid Schild’s old argument for spacetime curvature, which has been reproduced by many authors as a pedagogical introduction to curved spacetime. More generally, because the uniformly accelerated frame simulates a gravitational field, it can play a strong role in discussions of proper and coordinate times in advanced relativity.


Sign in / Sign up

Export Citation Format

Share Document