scholarly journals Geodesic stability and quasi normal modes via Lyapunov exponent for Hayward black hole

2020 ◽  
Vol 35 (30) ◽  
pp. 2050249
Author(s):  
Monimala Mondal ◽  
Parthapratim Pradhan ◽  
Farook Rahaman ◽  
Indrani Karar

We derive proper time Lyapunov exponent [Formula: see text] and coordinate time Lyapunov exponent [Formula: see text] for a regular Hayward class of black hole. The proper time corresponds to [Formula: see text] and the coordinate time corresponds to [Formula: see text], where [Formula: see text] is measured by the asymptotic observers both for Hayward black hole and for special case of Schwarzschild black hole. We compute their ratio as [Formula: see text] for time-like geodesics. In the limit of [Formula: see text] that means for Schwarzschild black hole this ratio reduces to [Formula: see text]. Using Lyapunov exponent, we investigate the stability and instability of equatorial circular geodesics. By evaluating the Lyapunov exponent, which is the inverse of the instability time scale, we show that, in the eikonal limit, the real and imaginary parts of quasi-normal modes (QNMs) is specified by the frequency and instability time scale of the null circular geodesics. Furthermore, we discuss the unstable photon sphere and radius of shadow for this class of black hole.

Author(s):  
Shobhit Giri ◽  
Hemwati Nandan ◽  
Lokesh Kumar Joshi ◽  
Sunil D. Maharaj

We investigate the existence and stability of both the timelike and null circular orbits for a (2 + 1)-dimensional charged BTZ black hole in Einstein-nonlinear Maxwell gravity with a negative cosmological constant. The stability analysis of orbits is performed to study the possibility of chaos in geodesic motion for a special case of black hole so-called conformally invariant Maxwell spacetime. The computations of both proper time Lyapunov exponent [Formula: see text] and coordinate time Lyapunov exponent [Formula: see text] are useful to determine the stability of these circular orbits. We observe the behavior of the ratio [Formula: see text] as a function of radius of circular orbits for the timelike case in view of different values of charge parameter. However, for the null case, we calculate only the coordinate time Lyapunov exponent [Formula: see text] as there is no proper time for massless test particles. More specifically, we further analyze the behavior of the ratio of [Formula: see text] to angular frequency [Formula: see text], so-called instability exponent as a function of charge [Formula: see text] and parameter related to cosmological constant [Formula: see text] for the particular values of other parameters.


2021 ◽  
Vol 81 (5) ◽  
Author(s):  
G. Mustafa ◽  
Ibrar Hussain

AbstractThe null and timelike geodesic motion in the vicinity of the Schwarzschild black hole in the presence of the string cloud parameter a and the quintessence field parameter q is studied. The ranges for both the parameters a and q are determined, which allow the existence of the black hole. In the radial motion of photon, the coordinate time t first decreases with the increasing values of both the parameters a and q and then in the close proximity of the horizon of the black hole, there is a turning point, after which the effect of the quintessence field is just opposite on the time t. For the massive particles, the proper time $$\tau $$ τ decreases with increasing values of the parameter a and increases with increase in the value of the parameter q. In the same case of the massive particles, the coordinate time t decreases with increase in the values of both the parameters a and q. Further, it is found that for test particles, the stable circular orbits exist in this spacetime for small values of both the parameters i.e., for $$0<a\ll 1$$ 0 < a ≪ 1 and $$0<q\ll 1$$ 0 < q ≪ 1 . It is observed that the radii of the null circular orbits increase as the values of the parameters a and q increase. While in the case of the timelike geodesics, the radii of the circular orbits increase as the value of the parameter a increases, and they decrease as the value of the parameter q increases.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Panos Betzios ◽  
Nava Gaddam ◽  
Olga Papadoulaki

Abstract We describe a unitary scattering process, as observed from spatial infinity, of massless scalar particles on an asymptotically flat Schwarzschild black hole background. In order to do so, we split the problem in two different regimes governing the dynamics of the scattering process. The first describes the evolution of the modes in the region away from the horizon and can be analysed in terms of the effective Regge-Wheeler potential. In the near horizon region, where the Regge-Wheeler potential becomes insignificant, the WKB geometric optics approximation of Hawking’s is replaced by the near-horizon gravitational scattering matrix that captures non-perturbative soft graviton exchanges near the horizon. We perform an appropriate matching for the scattering solutions of these two dynamical problems and compute the resulting Bogoliubov relations, that combines both dynamics. This allows us to formulate an S-matrix for the scattering process that is manifestly unitary. We discuss the analogue of the (quasi)-normal modes in this setup and the emergence of gravitational echoes that follow an original burst of radiation as the excited black hole relaxes to equilibrium.


2020 ◽  
Vol 35 (27) ◽  
pp. 2050225 ◽  
Author(s):  
Riasat Ali ◽  
Muhammad Asgher ◽  
M. F. Malik

This paper is devoted to the tunneling radiation and quantum gravity effect on tunneling radiation of neutral regular black hole in Rastall gravity. We analyzed the tunneling radiation and Hawking temperature of neutral regular black hole by applying the Hamilton-Jacobi ansatz phenomenon. Lagrangian wave equation have been investigated by generalized uncertainty principle (GUP), using the WKB-approximation and calculated the tunneling rate as well as temperature. Furthermore, we analyzed the temperature of this neutral regular black hole in the presence of gravity. The stability and instability of neutral regular black hole are also analyzed.


2002 ◽  
Vol 17 (20) ◽  
pp. 2752-2752
Author(s):  
VITOR CARDOSO ◽  
JOSÉ P. S. LEMOS

We studied the quasi-normal modes (QNM) of electromagnetic and gravitational perturbations of a Schwarzschild black hole in an asymptotically anti-de Sitter (AdS) spacetime, extending previous works1,2 on the subject. Some of the electromagnetic modes do not oscillate, they only decay, since they have pure imaginary frequencies. The gravitational modes show peculiar features: the odd and even gravitational perturbations no longer have the same characteristic quasinormal frequencies. There is a special mode for odd perturbations whose behavior differs completely from the usual one in scalar1 and electromagnetic perturbation in an AdS spacetime, but has a similar behavior to the Schwarzschild black hole3 in an asymptotically flat spacetime: the imaginary part of the frequency goes as [Formula: see text], where r+ is the horizon radius. We also investigated the small black hole limit showing that the imaginary part of the frequency goes as [Formula: see text]. These results are important to the AdS/CFT4 conjecture since according to it the QNMs describe the approach to equilibrium in the conformal field theory. For other geometries see5,6.


2004 ◽  
Vol 19 (03) ◽  
pp. 239-252 ◽  
Author(s):  
LI-HUI XUE ◽  
ZAI-XIONG SHEN ◽  
BIN WANG ◽  
RU-KENG SU

We study the massless scalar wave propagation in the time-dependent Schwarzschild black hole background. We find that the Kruskal coordinate is an appropriate framework to investigate the time-dependent spacetime. A time-dependent scattering potential is derived by considering dynamical black hole with parameters changing with time. It is shown that in the quasinormal ringing both the decay time-scale and oscillation are modified in the time-dependent background.


2014 ◽  
Vol 92 (1) ◽  
pp. 46-50
Author(s):  
De-Jiang Qi

Recently, via adiabatic invariance, Majhi and Vagenas quantized the horizon area of the general class of a static spherically symmetric space–time. Very recently, applying the period of the gravity system with respect to the Euclidean time, Zeng and Liu derived area spectra of a Schwarzschild black hole and a Kerr black hole. It is noteworthy that the preceding methods are not useful for the quasi-normal modes. In this paper, based on those works, and as a further study, adopting near horizon approximation, applying the laws of black hole thermodynamics, we would like to investigate the black hole spectroscopy from a class of Plebański and Demiański space–times by using two different methods. The result shows that the area spectrum of the black hole is [Formula: see text], which confirms the initial proposal of Bekenstein, and the result is consistent with that already obtained by Maggiore with quasi-normal modes.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Keagan Blanchette ◽  
Saurya Das ◽  
Saeed Rastgoo

Abstract The classical Raychaudhuri equation predicts the formation of conjugate points for a congruence of geodesics, in a finite proper time. This in conjunction with the Hawking-Penrose singularity theorems predicts the incompleteness of geodesics and thereby the singular nature of practically all spacetimes. We compute the generic corrections to the Raychaudhuri equation in the interior of a Schwarzschild black hole, arising from modifications to the algebra inspired by the generalized uncertainty principle (GUP) theories. Then we study four specific models of GUP, compute their effective dynamics as well as their expansion and its rate of change using the Raychaudhuri equation. We show that the modification from GUP in two of these models, where such modifications are dependent of the configuration variables, lead to finite Kretchmann scalar, expansion and its rate, hence implying the resolution of the singularity. However, the other two models for which the modifications depend on the momenta still retain their singularities even in the effective regime.


2017 ◽  
Vol 26 (09) ◽  
pp. 1750091 ◽  
Author(s):  
M. Sharif ◽  
Sehrish Iftikhar

This paper explores dynamics of particles in the combined gravitational and electromagnetic fields of the dyonic Reissner–Nordström background. We discuss possibilities for the particle escape to infinity at inner most stable circular orbit. We study the stability of orbit through Lyapunov exponent and the effective force on particle. The collision of particles is investigated through the center of mass energy near the horizon of black hole. Finally, we compare our results with the motion of particles around Schwarzschild and Reissner–Nordström black hole. We conclude that charge of the black hole has a strong effect on the motion of particles.


Sign in / Sign up

Export Citation Format

Share Document