Final Remarks: Connections between Chemical and Dynamical Evolution

1977 ◽  
Vol 45 ◽  
pp. 309-319
Author(s):  
Beatrice M. Tinsley

Dynamical processes strongly affect the chemical enrichment of gas in galaxies, so abundances in stars and the Interstellar medium can be used as probes of the dynamical history of the Galaxy. By way of tying together some diverse points, rather than summarizing the conference, I shall discuss some examples of connections between chemical and dynamical evolution. The first section of this paper mentions some of the well-known ways in which dynamical processes can affect chemical evolution, in order to outline a theoretical background to the use of abundances as clues to dynamics.

1983 ◽  
Vol 103 ◽  
pp. 463-472 ◽  
Author(s):  
Alfonso Serrano

Tinsley (1978) has done an excellent review that illustrates the methods and concepts that can be developed to assess the effects of planetary nebulae (PN) on the long-term history of the galaxy. Tinsley concluded that research in PN could put constraints on the past rate of star formation and provide information on chemical enrichment by low mass stars.


2008 ◽  
Vol 4 (S254) ◽  
pp. 393-398
Author(s):  
Takuji Tsujimoto ◽  
Joss Bland-Hawthorn ◽  
Kenneth C. Freeman

AbstractComparison of elemental abundance features between old and young thin disk stars may reveal the action of ravaging winds from the Galactic bulge, which once enriched the whole disk, and set up the steep abundance gradient in the inner disk (RGC ≲ 10–;12 kpc) and simultaneously the metallicity floor ([Fe/H]~ −0.5) in the outer disk. After the end of a crucial influence by winds, chemical enrichment through accretion of a metal-poor material from the halo onto the disk gradually reduced the metallicity of the inner region, whereas an increase in the metallicity proceeded beyond a solar circle. This results in a flattening of abundance gradient in the inner disk, and our chemical evolution models confirm this mechanism for a flattening, which is in good agreement with the observations. Our scenario also naturally explains an observed break in the metallicity floor of the outer disk by young stars since the limit of self-enrichment in the outer disk is supposed to be [Fe/H]≲ −1 and inevitably incurs a direct influence of the dilution by a low-metal infall whose metallicity is [Fe/H]~ −1. Accordingly, we propose that the enrichment by large-scale winds is a crucial factor for chemical evolution of the disk, and claim to reconsider the models thus far for the disk including the solar neighborhood, in which the metallicity is predicted to monotonously increase with time. Furthermore, we anticipate that a flattening of abundance gradient together with a metal-rich floor in the outer disk are the hallmark of disk galaxies with significant central bulges.


2014 ◽  
Vol 10 (S309) ◽  
pp. 99-104
Author(s):  
R. M. González Delgado ◽  
R. Cid Fernandes ◽  
R. García-Benito ◽  
E. Pérez ◽  
A. L. de Amorim ◽  
...  

AbstractWe resolve spatially the star formation history of 300 nearby galaxies from the CALIFA integral field survey to investigate: a) the radial structure and gradients of the present stellar populations properties as a function of the Hubble type; and b) the role that plays the galaxy stellar mass and stellar mass surface density in governing the star formation history and metallicity enrichment of spheroids and the disks of galaxies. We apply the fossil record method based on spectral synthesis techniques to recover spatially and temporally resolved maps of stellar population properties of spheroids and spirals with galaxy mass from 109 to 7×1011 M⊙. The individual radial profiles of the stellar mass surface density (μ⋆), stellar extinction (AV), luminosity weighted ages (〈logage〉L), and mass weighted metallicity (〈log Z/Z⊙〉M) are stacked in seven bins of galaxy morphology (E, S0, Sa, Sb, Sbc, Sc and Sd). All these properties show negative gradients as a sight of the inside-out growth of massive galaxies. However, the gradients depend on the Hubble type in different ways. For the same galaxy mass, E and S0 galaxies show the largest inner gradients in μ⋆; and Andromeda-like galaxies (Sb with log M⋆ (M⊙) ∼ 11) show the largest inner age and metallicity gradients. In average, spiral galaxies have a stellar metallicity gradient ∼ −0.1 dex per half-light radius, in agreement with the value estimated for the ionized gas oxygen abundance gradient by CALIFA. A global (M⋆-driven) and local (μ⋆-driven) stellar metallicity relation are derived. We find that in disks, the stellar mass surface density regulates the stellar metallicity; in spheroids, the galaxy stellar mass dominates the physics of star formation and chemical enrichment.


1984 ◽  
Vol 105 ◽  
pp. 577-578
Author(s):  
F. Matteucci ◽  
A. Tornambé

Models of chemical evolution of the Galaxy have been computed by taking into account the different roles played by TypeI-1/2 (single stars suffering degenerate C-ignition) and Typell supernovae in the chemical enrichment. The overabundance of oxygen observed in the Halo stellar population has been well reproduced.


2011 ◽  
Vol 7 (S283) ◽  
pp. 251-258 ◽  
Author(s):  
Laura Magrini ◽  
Letizia Stanghellini ◽  
Denise R. Gonçalves

AbstractThe study of the chemical composition of Planetary Nebulae in external galaxies is of paramount importance for the fields of stellar evolution and chemical enrichment history of galaxies. In recent years a number of spectroscopic studies with 6-8m-class telescopes have been devoted to this subject improving our knowledge of, among other, the time-evolution of the radial metallicity gradient in disk galaxies, the chemical evolution of dwarf galaxies, and stellar evolution at low metallicity.


1996 ◽  
Vol 171 ◽  
pp. 11-18
Author(s):  
R.C. Kennicutt

Nearby spiral galaxies offer vital clues to some of the most fundamental questions about galaxy formation and evolution: What is the star formation history of the universe, past and future? When did disks form, during the final stages of a single primeval collapse, or as a continuous or episodic process? What is the evolutionary nature of the Hubble sequence, and what are the physical mechanisms that dictate the present-day Hubble type of a galaxy? Was Hubble type imprinted at birth, or can it be deterined or at least modified by infall, mergers, or secular dynamical evolution within the galaxy? These issues are not specific to spirals, of course, and much of this conference will address just these questions in a broader context. However present-day spirals offer unique advantages for studying these problems; they exhibit a broad range of dynamical and evolutionary properties, and the dynamical fragility of disks makes them excellent seismometers of galaxy interaction and merger rates at recent epochs.


2019 ◽  
Vol 15 (S341) ◽  
pp. 119-123
Author(s):  
Dian Triani ◽  
Darren Croton ◽  
Manodeep Sinha

AbstractWe build a theoretical picture of how the light from galaxies evolves across cosmic time. In particular, we predict the evolution of the galaxy spectral energy distribution (SED) by carefully integrating the star formation and metal enrichment histories of semi-analytic model (SAM) galaxies and combining these with stellar population synthesis models which we call mentari. Our SAM combines prescriptions to model the interplay between gas accretion, star formation, feedback process, and chemical enrichment in galaxy evolution. From this, the SED of any simulated galaxy at any point in its history can be constructed and compared with telescope data to reverse engineer the various physical processes that may have led to a particular set of observations. The synthetic SEDs of millions of simulated galaxies from mentari can cover wavelengths from the far UV to infrared, and thus can tell a near complete story of the history of galaxy evolution.


2011 ◽  
Vol 7 (S281) ◽  
pp. 251-252
Author(s):  
Takuji Tsujimoto

AbstractThe Galaxy is composed of four distinct structures, i.e., halo, bulge, and thick and thin disks, that are formed and evolved on different timescales; thus accordingly the speeds of chemical enrichment are different from one another, which is imprinted in individual stellar abundances. To decipher them, precise knowledge of the timing of the release of nucleosynthesis materials from various production sites is critical. The delay time distribution (DTD) of Type Ia supernovae (SNe Ia), recently revealed by the SNe Ia surveys of external galaxies, is incorporated into the models of chemical evolution for each structure. Here we report that the observed chemical properties for the thin and thick disks are compatible with a new SNe Ia DTD, and suggests a close chemical connection between the two in the way that the thin disk is formed from gas left after thick disk formation. This nicely explains the lack of thin disk stars with [Fe/H] ≲ −0.8. In this new context, a top-heavy IMF for the bulge is firmly confirmed. Finally we discuss the possibility of some modification of the DTD that might be considered for the halo case.


2013 ◽  
Vol 9 (S298) ◽  
pp. 419-420
Author(s):  
Ji Li ◽  
Ruijuan Fu

AbstractThe abundance ratio [α/Fe] is a useful tracer to probe the history of star formation and the chemical evolution of the Galaxy. We present a statistical analysis of [α/Fe] in 953 dwarf stars to investigate the distributions of [α/Fe] in the the thin- and thick-disk stars.


1974 ◽  
Vol 3 ◽  
pp. 419-421
Author(s):  
J. Einasto

The spatial and kinematical properties of galactic populations are very conservative for time changes. Therefore the study of these properties gives us certain information on the past dynamical evolution of the Galaxy, in particular on the evolution of star generating medium (interstellar gas, as generally accepted). The detailed study of spatial structure of stellar populations in our Galaxy is possible in exceptional cases only. But the study of kinematical properties is possible practically for all populations, which makes these studies very useful for cosmogonic purpose.In order to obtain adequate quantitative information for the study of dynamical history of the Galaxy the statistical data on stellar velocities are to satisfy the following requirements: populations under study must be physically homogeneous; statistical samples of stars must be free from selection effects, especially from velocity selection; information on r.m.s. errors of observed quantities must be known in order to correct the results for accidental observational errors; the data for the determination of the age of the sample must be available.


Sign in / Sign up

Export Citation Format

Share Document