scholarly journals Alinement of Solid Interstellar Particles by a Magnetic Field

1965 ◽  
Vol 7 ◽  
pp. 73-76
Author(s):  
Lyman Spitzer ◽  
R. V. Jones

For a Long Time the Davis-Greenstein Theory (ref. 1) has been generally considered an adequate explanation of the mechanism responsible for the alinement of interstellar grains and thus for the observed interstellar polarization. The magnetic field required to orient paramagnetic grains is apparently somewhat greater than 10-5 gauss, a relatively large field, but according to reference 2 ferromagnetic grains, proposed by the authors of reference 3, can be oriented by a field of only 10-7 gauss. These results indicate that orientation of interstellar grains is easily explained, even if the magnetic field in interstellar space is relatively weak.Unfortunately, this relatively satisfactory state of affairs has been upset by two developments. Firstly, the basic mechanism of magnetic relaxation proposed by Davis and Greenstein has been questioned by Dr. C. Kittel of the University of California, who has pointed out that the disorienting effect associated with thermal fluctuations of magnetization within the solid particles is ignored in the formulation of this mechanism.

1993 ◽  
Vol 138 ◽  
pp. 305-309
Author(s):  
Marco Landolfi ◽  
Egidio Landi Degl’Innocenti ◽  
Maurizio Landi Degl’Innocenti ◽  
Jean-Louis Leroy ◽  
Stefano Bagnulo

AbstractBroadband linear polarization in the spectra of Ap stars is believed to be due to differential saturation between σ and π Zeeman components in spectral lines. This mechanism has been known for a long time to be the main agent of a similar phenomenon observed in sunspots. Since this phenomenon has been carefully calibrated in the solar case, it can be confidently used to deduce the magnetic field of Ap stars.Given the magnetic configuration of a rotating star, it is possible to deduce the broadband polarization at any phase. Calculations performed for the oblique dipole model show that the resulting polarization diagrams are very sensitive to the values of i (the angle between the rotation axis and the line of sight) and β (the angle between the rotation and magnetic axes). The dependence on i and β is such that the four-fold ambiguity typical of the circular polarization observations ((i,β), (β,i), (π-i,π-β), (π-β,π-i)) can be removed.


1971 ◽  
Vol 43 ◽  
pp. 24-29 ◽  
Author(s):  
J. V. Ramsay ◽  
R. G. Giovanelli ◽  
H. R. Gillett

The magnetograph is based on a high-resolution filter which serves in place of a spectrograph, except that a reasonably large field of view (one-quarter of the Sun's diameter) can be observed at the one instant. Observations are made by obtaining filtergrams of opposite circular polarizations simultaneously in the wing of a magnetically sensitive line. Exposure times are about 0.3 s, the angular resolution of the magnetic field is about 2 arc s, closest frame repetition rates about 8 s. The filtergrams are processed subsequently by photographic or television subtraction. Semiautomatic photographic and/or TV subtractions yield magnetograms suitable for cinematographic projection though the subtractions are not yet as perfect as those obtained by individual subtraction.


1968 ◽  
Vol 35 ◽  
pp. 215-229 ◽  
Author(s):  
E. I. Mogilevsky ◽  
L. B. Demkina ◽  
B. A. Ioshpa ◽  
V. N. Obridko

The model of the magnetic field of sunspots, taking account of fine structure of magnetic field in solar plasma, is considered. Small-scale subgranules with their own field form magnetic filaments in the external current-free field. The filaments are vertical in the umbra, while in the penumbra they run along the surface with sharp bends. In a number of spot umbra the relation between Doppler velocity and the field is established on polarized spectrograms. The π-component splitting in umbra is interpreted as a result of a weak background magnetic-field existence together with a large field of magnetic filaments. Spectrographic definition of the magnetic field in spot umbra is accomplished on the effect of magnetic-lines intensification and directly on spectrograms of low-excitation (Fe I, Ti I) and high-excitation (Fe II) lines. Magnetic field measured in low-excitation lines exceeds twice the field value obtained in high-excitation lines. This result has been considered in the light of the proposed model of sunspot field.


Solar Physics ◽  
2019 ◽  
Vol 294 (11) ◽  
Author(s):  
D. Aaron Roberts ◽  
Leon Ofman

Abstract We present 2.5D hybrid simulations of the spectral and thermodynamic evolution of an initial state of magnetic field and plasma variables that in many ways represents solar wind fluctuations. In accordance with Helios near-Sun high-speed stream observations, we start with Alfvénic fluctuations along a mean magnetic field in which the fluctuations in the magnitude of the magnetic field are minimized. Since fluctuations in the radial flow speed are the dominant free energy in the observed fluctuations, we include a field-aligned $v_{\|}(k_{\perp })$v∥(k⊥) with an $k^{ -1}$k−1 spectrum of velocity fluctuations to drive the turbulent evolution. The flow rapidly distorts the Alfvénic fluctuations, yielding spectra (determined by spacecraft-like cuts) transverse to the field that become comparable to the $k_{\|}$k∥ fluctuations, as in spacecraft observations. The initial near constancy of the magnetic field is lost during the evolution; we show this also takes place observationally. We find some evolution in the anisotropy of the thermal fluctuations, consistent with expectations based on Helios data. We present 2D spectra of the fluctuations, showing the evolution of the power spectrum and cross-helicity. Despite simplifying assumptions, many aspects of simulations and observations agree. The greatly faster evolution in the simulations is at least in part due to the small scales being simulated, but also to the non-equilibrium initial conditions and the relatively low overall Alfvénicity of the initial fluctuations.


2002 ◽  
Vol 12 (9) ◽  
pp. 385-388
Author(s):  
A. Buzdin ◽  
M. Houzet

A long time ago, it was predicted by Larkin and Ovchinnikov and Fulde and Ferrell that the non-uniform superconducting state (FFLO state) must appear in the magnetic field acting on the electron spins. Up to now, there have been no unambiguous experimental proofs in the favour of this state observation. We discuss the unusual properties of such a state, which can permit its identification. It is demonstrated that in 2D (or quasi 2D) superconductors the FFLO state leads to an appearance of a very special oscillatory - like dependence of the upper critical field versus the angle with the respect to the layers. The new solutions, corresponding to the higher Landau level functions are realized, and the vortex lattice structures are quite exotic. Corresponding vortex states reveal the zeros of superconducting order parameter with high winding numbers. The predicted quasi-oscillatory angular and temperature dependence of Bc2, as well as a cascade of first order transitions must permit the unambiguous identification of mysterious FFLO state. Very recently the magnetic-field-induced superconductivity has been observed in the quasi two-dimensional (2d) organic conductor (BETS)2FeCI4 which is an excellent candidate for the observation of the discussed effects.


2011 ◽  
Vol 26 (16) ◽  
pp. 2725-2733 ◽  
Author(s):  
A. V. KUZNETSOV ◽  
A. A. OKRUGIN

The exact propagator for an electron in a constant uniform magnetic field as the sum over Landau levels is obtained using the direct derivation by standard methods of quantum field theory from exact solutions to the Dirac equation in the magnetic field. The result can be useful for further development of the calculation technique of quantum processes in an external active medium, particularly in the conditions of moderately large field strengths when it is insufficient to take into account only the ground Landau level contribution.


2000 ◽  
Vol 10 (04) ◽  
pp. 539-553 ◽  
Author(s):  
E. FRÉNOD ◽  
E. SONNENDRÜCKER

When charged particles are submitted to a large external magnetic field, their movement in first approximation occurs along the magnetic field lines and obeys a one-dimensional Vlasov equation along these field lines. However, when observing the particles on a sufficiently long time scale, a drift phenomenon perpendicular to the magnetic field lines superposes to this first movement. In this paper, we present a rigorous asymptotic analysis of the two-dimensional Vlasov equation when the magnetic field tends to infinity, the observation time scale increases accordingly. Techniques based on the two-scale convergence and the introduction of a second problem enable us to find an equation verified by the weak limit of the distribution function.


2005 ◽  
Vol 128 (2) ◽  
pp. 163-168 ◽  
Author(s):  
Constantin Ciocanel ◽  
Kevin Molyet ◽  
Hideki Yamamoto ◽  
Sheila L. Vieira ◽  
Nagi G. Naganathan

This paper presents a new magnetorheological (MR) cell design along with a study of the magnetic field, shear rate, and time/shear strain influences on the properties and behavior of a MR fluid tested for long periods of time. The MR cell was designed to adapt a commercially available rheometer to measure the rheological properties of the fluid. Overall characteristics of the designed MR cell output capability are provided. Constant shear rate tests, two hours in duration, have been performed at shear rates between 0.1l∕s and 200l∕s under magnetic field intensities up to 0.4T. The rheological measurements indicated that over time the fluid’s shear stress magnitude decreases until it reaches a steady state. The time required to reach the steady state depends on both the magnetic field strength and the shear rate. The higher the field and the smaller the shear rate the shorter the time for the steady state to be reached.


1989 ◽  
Vol 169 ◽  
Author(s):  
Yonhua Tzeng ◽  
Mitchell A. Belser

AbstractThe effects of low magnetic field (0–40 Gauss) on electrical properties of gold-YBCO contacts are investigated. The contact resistance increases significantly with applied magnetic fields. For high magnetic field or when high current is flowing through the contact, the contact resistance decays after removing the magnetic field to a finite value greater than that is measured before the contact is exposed to the magnetic field and stays there for long time as long as the sample is kept below the superconductivity critical temperature.


Sign in / Sign up

Export Citation Format

Share Document