scholarly journals Gedankenexperimente: Assessing Field-Program Effectiveness by Numerical Simulations (Abstract)

1988 ◽  
Vol 11 ◽  
pp. 201-202
Author(s):  
M. A. Lange ◽  
D. R. MacAyeal

Glaciological field programs may be regarded as imperfect sampling schemes designed to provide fundamental physical information on the dynamics and climatic sensitivity of the Antarctic ice sheet. Uncertainty arises as a result of technical and human factors such as: (i) logistic and financial constraints, (ii) measurement errors, (iii) low spatial resolution (see (i)), and (iv) (possibly!) misconceptions on the part of glaciologists who plan and execute field work. Regardless of such uncertainty, we depend on field data as the fundamental intellectual driving force of glaciology. Introspective evaluation of our field methods and program designs is thus reasonable, and perhaps necessary, to insure that our field programs are indeed satisfying their intended purpose. In our study, we conduct a variety of Gedankenexperimente (imaginary field programs), which sample an arbitrary, idealized ice shelf, subject to fluctuations and climatic changes on a variety of time and space scales. The “actual ” behavior of this ice shelf is produced by a time-dependent numerical simulation of ice-shelf evolution under specified forcings, using a model based on that of Lange and MacAyeal (1986). Each Gedankenexperiment consists of a spatially incomplete sampling of the model grid data at a particular moment in the evolution of the ice shelf (just as a real field program presently would sample the current state of an Antarctic ice shelf). The spatial sampling patterns are based on particular techniques commonly used in field programs (Kohnen 1985, Bindschadler and others 1987, Doake and others 1987, Shabtaie and Bentley 1987). Such sampling is designed to simulate field techniques such as airborne radio echo-sounding, surface geodetic measurements, aerial photography, and satellite altimetry (Fig. 1). We also add “random noise” to the sampled data, to simulate instrumental and navigational uncertainties. Having sampled the idealized ice shelf by using an imaginary field program, we “process” the supposed field data in order to test how well it reveals certain aspects of ice-shelf flow and evolution. This test is conducted by comparing the field-program results with the “known” behavior (by definition) of the numerical simulation. A variety of field-program design schemes are compared on the basis of their ability to predict: (i) the long-term growth or decay of the ice shelf, (ii) the “current” state of mass balance, (iii) the “current” partitioning of ice-stream input, and (iv) the balance of forces acting on the grounding line, and the tendency of the balance to change with time. A major aim of our study will be to point out how seriously the understanding of current ice-shelf dynamics and the ability to measure initial effects of global climatic changes (due to CO2 warming) are hampered by: (i) inability to map accurately all the regions of ice-shelf grounding, and (ii) inability to distinguish the effects of short-term variability from long-term, large-scale trends. To simulate the effects of ice-shelf grounding and ice-stream -temporal fluctuations, we specify in our idealized simulations that: (i) several ice rumples occasionally appear or disappear, and (ii) ice-stream fluxes, which feed the imaginary ice shelf, fluctuate (arbitrarily) with periods of 300 years. Since we assess the Gedankenexperimente in terms of their ability to detect long-term climatic trends, we run the ideal ice-shelf simulation forward in time until a statistically steady state is achieved (that is, all thickness and velocity patterns are stationary when averaged over the time-scale of fluctuation). At this point, we conduct the imaginary field programs in our study. Our main intention is to determine which Gedankenexperiment can best “see through” the short-term transient “noise” of the ideal ice-shelf evolution to detect the long-term condition of steady state.

1988 ◽  
Vol 11 ◽  
pp. 201-202
Author(s):  
M. A. Lange ◽  
D. R. MacAyeal

Glaciological field programs may be regarded as imperfect sampling schemes designed to provide fundamental physical information on the dynamics and climatic sensitivity of the Antarctic ice sheet. Uncertainty arises as a result of technical and human factors such as: (i) logistic and financial constraints, (ii) measurement errors, (iii) low spatial resolution (see (i)), and (iv) (possibly!) misconceptions on the part of glaciologists who plan and execute field work. Regardless of such uncertainty, we depend on field data as the fundamental intellectual driving force of glaciology. Introspective evaluation of our field methods and program designs is thus reasonable, and perhaps necessary, to insure that our field programs are indeed satisfying their intended purpose.In our study, we conduct a variety of Gedankenexperimente (imaginary field programs), which sample an arbitrary, idealized ice shelf, subject to fluctuations and climatic changes on a variety of time and space scales. The “actual ” behavior of this ice shelf is produced by a time-dependent numerical simulation of ice-shelf evolution under specified forcings, using a model based on that of Lange and MacAyeal (1986). Each Gedankenexperiment consists of a spatially incomplete sampling of the model grid data at a particular moment in the evolution of the ice shelf (just as a real field program presently would sample the current state of an Antarctic ice shelf). The spatial sampling patterns are based on particular techniques commonly used in field programs (Kohnen 1985, Bindschadler and others 1987, Doake and others 1987, Shabtaie and Bentley 1987). Such sampling is designed to simulate field techniques such as airborne radio echo-sounding, surface geodetic measurements, aerial photography, and satellite altimetry (Fig. 1). We also add “random noise” to the sampled data, to simulate instrumental and navigational uncertainties.Having sampled the idealized ice shelf by using an imaginary field program, we “process” the supposed field data in order to test how well it reveals certain aspects of ice-shelf flow and evolution. This test is conducted by comparing the field-program results with the “known” behavior (by definition) of the numerical simulation. A variety of field-program design schemes are compared on the basis of their ability to predict: (i) the long-term growth or decay of the ice shelf, (ii) the “current” state of mass balance, (iii) the “current” partitioning of ice-stream input, and (iv) the balance of forces acting on the grounding line, and the tendency of the balance to change with time.A major aim of our study will be to point out how seriously the understanding of current ice-shelf dynamics and the ability to measure initial effects of global climatic changes (due to CO2 warming) are hampered by: (i) inability to map accurately all the regions of ice-shelf grounding, and (ii) inability to distinguish the effects of short-term variability from long-term, large-scale trends. To simulate the effects of ice-shelf grounding and ice-stream -temporal fluctuations, we specify in our idealized simulations that: (i) several ice rumples occasionally appear or disappear, and (ii) ice-stream fluxes, which feed the imaginary ice shelf, fluctuate (arbitrarily) with periods of 300 years.Since we assess the Gedankenexperimente in terms of their ability to detect long-term climatic trends, we run the ideal ice-shelf simulation forward in time until a statistically steady state is achieved (that is, all thickness and velocity patterns are stationary when averaged over the time-scale of fluctuation). At this point, we conduct the imaginary field programs in our study. Our main intention is to determine which Gedankenexperiment can best “see through” the short-term transient “noise” of the ideal ice-shelf evolution to detect the long-term condition of steady state.


2021 ◽  
Vol 3 (3) ◽  
pp. 3-10
Author(s):  
Emőd Veress

The aim of the discussion paper is to assess the current state of Romanian−Hungarian relations in Transylvania, the causes of the problems and possible ways to improve interethnic links. The proposals include legal and non-legal solutions. From a Hungarian point of view, is not possible to circumvent the redesign of the dialogue; it is necessary to be able to explain why the goal is to achieve consociational democracy. In this context, it is also necessary to write a short programe document in Romanian outlining the ideal model of coexistence. The legal instrument for moving forward still seems to be the Minority Act provided for in the Constitution but never adopted. In this regard, Romania is in a situation of anti-constitutionality due to omission. Resolving the problem of language use in the judiciary is also a key issue. The establishment of training centres in Cluj-Napoca and Iași within the framework of the National Institute of Magistracy in the short term may be a step forward to tackle the under-representation in the judiciary, while consociational democracy is the solution in the long term for this issue as well. The topic of cultural autonomy, which already exists in certain elements, is also open and may lead to progress, and this must be resolved within the framework of the Minority Act.


Author(s):  
Anton Agus Setyawan ◽  
Fatchurrohman Fatchurrohman

There are two constraints in the process of economic recovery in Indonesia. First, investment rate is decreasing in the last five years. This matter happens due to the bad investment climate in Indonesia. Second, slow growth of export rate in Indonesia. At the present, investment rate in Indonesia is only 22 percent of GDP, while the ideal rate is 30 percent of GDP. Another problem, which may be interrupting the economic recovery, is de-industrialization. The sign of de-industrialization occur by relocation phenomena of FDIfrom Indonesia. This research analyze the effects of direct investment and export to GDP. The tool of analyses of this research is econometric model known as Error Correc­tion Models. The results shows that in a long term and short term, export and direct investment do not have a significant effect to GDP. It shows that Indonesia do not have a clear policy about export and investment. The policy implications of this research are government should have a deregulation policy in the industry and recover investment climate.


1988 ◽  
Vol 34 (116) ◽  
pp. 121-127 ◽  
Author(s):  
Douglas R. MacAyeal ◽  
Victor Barcilon

AbstractIce-stream discharge fluctuations constitute an independent means of forcing unsteady ice-shelf behavior, and their effect must be distinguished from those of oceanic and atmospheric climate to understand ice-shelf change. In addition, ice-stream-generated thickness anomalies may constitute a primary trigger of ice-rise formation in the absence of major sea-level fluctuations. Such triggering may maintain the current ice-rise population that, in turn, contributes to long-term ice-sheet stability. Here, we show that ice-stream-generated fluctuations of an ideal, two-dimensional ice shelf propagate along two characteristic trajectories. One trajectory permits instantaneous transmission of grounding-line velocity changes to all points down-stream. The other trajectory represents slow transmission of grounding-line thickness changes along Lagrangian particle paths.


1988 ◽  
Vol 34 (116) ◽  
pp. 121-127 ◽  
Author(s):  
Douglas R. MacAyeal ◽  
Victor Barcilon

AbstractIce-stream discharge fluctuations constitute an independent means of forcing unsteady ice-shelf behavior, and their effect must be distinguished from those of oceanic and atmospheric climate to understand ice-shelf change. In addition, ice-stream-generated thickness anomalies may constitute a primary trigger of ice-rise formation in the absence of major sea-level fluctuations. Such triggering may maintain the current ice-rise population that, in turn, contributes to long-term ice-sheet stability. Here, we show that ice-stream-generated fluctuations of an ideal, two-dimensional ice shelf propagate along two characteristic trajectories. One trajectory permits instantaneous transmission of grounding-line velocity changes to all points down-stream. The other trajectory represents slow transmission of grounding-line thickness changes along Lagrangian particle paths.


2008 ◽  
Vol 8 (6) ◽  
pp. 1217-1228 ◽  
Author(s):  
A. Sánchez-Arcilla ◽  
D. González-Marco ◽  
R. Bolaños

Abstract. This paper reviews the characterization of wave storms along the Spanish/Catalan Mediterranean coast. It considers the "physical" and "statistical" description of wave parameters and how they are affected by the prevailing meteo patterns and the sharp gradients in orography and bathymetry. The available field data and numerically simulated wave fields are discussed from this perspective. The resulting limits in accuracy and predictability are illustrated with specific examples. This allows deriving some conclusions for both short-term operational predictions and a long-term climatic assessment.


2021 ◽  
Author(s):  
Jose L Horreo ◽  
Patrick S Fitze

Abstract The demographic trend of a species depends on the dynamics of its local populations, which can be compromised by local or by global phenomena. However, the relevance of local and global phenomena has rarely been investigated simultaneously. Here we tested whether local phenomena compromised a species’ demographic trend using the Eurasian common lizard Zootoca vivipara, the terrestrial reptile exhibiting the widest geographic distribution, as a model species. We analysed the species’ ancient demographic trend using genetic data from its six allopatric genetic clades and tested whether its demographic trend mainly depended on single clades or on global phenomena. Zootoca vivipara’s effective population size increased since 2.3 million years ago and started to increase steeply and continuously from 0.531 Mya. Population growth rate exhibited two maxima, both occurring during global climatic changes and important vegetation changes on the northern hemisphere. Effective population size and growth rate were negatively correlated with global surface temperatures, in line with global parameters driving long-term demographic trends. Zootoca vivipara’s ancient demography was not driven by a single clade, nor by the two clades that colonized huge geographic areas after the last glaciation. The low importance of local phenomena, suggests that the experimentally demonstrated high sensitivity of this species to short-term ecological changes is a response in order to cope with short-term and local changes. This suggests that what affected its long-term demographic trend the most, were not these local changes/responses, but rather the important and prolonged global climatic changes and important vegetation changes on the northern hemisphere, including the opening up of the forest by humans.


1988 ◽  
Vol 11 ◽  
pp. 202
Author(s):  
D. R. MacAyeal ◽  
R. A. Bindschadler

Field data is presented to support the hypothesis that Crary Ice Rise (on Ross Ice Shelf, Fig. 1) has substantially increased in area over the last 500 years, in response to ice advection through the mouth of Ice Stream B. The up-stream end of the ice rise is now surrounded by ice shelf that is currently thickening at 0.44 0.06 m/year (under an assumed zero basal melting rate). This rate of thickening suggests that the ice rise's contribution to back-stress resistance of Ice Stream B's flow, presently calculated to be 50% of the total back stress, is growing in the course of time. We speculate that this current development of the ice rise is the precursor to the possible future stagnation of Ice Stream B. It is convenient to conceptualize a possible see-saw oscillation between ice-stream surging and ice-rise build-up.


Sign in / Sign up

Export Citation Format

Share Document