scholarly journals Radiation-driven cannonball targets for high-convergence implosions

1993 ◽  
Vol 11 (1) ◽  
pp. 89-96 ◽  
Author(s):  
H. Nishimura ◽  
H. Shiraga ◽  
T. Endo ◽  
H. Takabe ◽  
M. Katayama ◽  
...  

In the last few years, systematic studies on radiation hydrodynamics in the X-ray confining cavity and a fuel capsule have attained remarkable progress. This makes it possible to analyze quantitatively the energy transfer processes from laser to the fusion capsule and find uniform irradiation conditions of the fusion capsule driven by thermal X rays. As a result, reproducible and stable implosions were achieved. Throughout implosion experiments with the Gekko XII blue laser system (351 nm, kJ, 0.8 ns), good agreement of implosion has been obtained between the experiment and numerical simulations, assuming perfectly spherical symmetry, up to a radial convergence ratio of 15. Described are particularly the issues of (1) energy transfer processes from laser to a fuel capsule and conditions for uniform irradiation, (2) properties of the X-ray propagation through aluminum heated by X-ray radiation, and (3) dependence of the convergence ratio of Ri/Rf (where Ri and Rf are the initial and final radii) of the capsule on the initial fill pressure of D–T gas and its influence on the core parameters and fusion products to evaluate implosion sphericity.

2016 ◽  
Vol 1 (3) ◽  
pp. 145
Author(s):  
Nevy T. Putri ◽  
Sarianoferni Sarianoferni ◽  
Endah Wahjuningsih

Intraoral periapical radiograph examination is the additional examination which is the most widely used in Dentistry. This radiograph examination using an x-ray ionizing radiation with low LET (Linear Energy Transfer), and may affect submandibular salivary gland. Ionizing radiation exposure can cause damage by inducing a series of changes at the molecular and cellular level. This study aimed to prove the effects of x-ray ionizing radiation with low LET towards the catalase activity of Rattus norvegicus strain Wistar’s submandibular gland. The subjects were 28 male Wistar rats and divided into 4 groups (n=7). Three groups were exposed 4, 8 and 14 times to radiation with 0.002 µSv for each exposure. The catalase activity of each rat was examined by a spectrophotometer. Data were analyzed using one-way ANOVA followed by Bonferroni test. The results showed the average of catalase activity on Wistar rat’s submandibular gland, respectively for: 0.150±0.0895 (KK), 0.1405±0.0607 (K1), 0.1228±0.0290 (K2), 0.1227±0.0556 (K3). Data showed significant differences of catalase activity between test groups, but showed not significant differences of catalase activity between each groups of Rattus norvegicus strain Wistar’s submandibular gland. In this study concluded decreased catalase activity of Rattus norvegicus strain Wistar’s submandibular gland resulting from x-rays ionizing radiation by 4 times, 8 times and 14 times exposures.


2007 ◽  
Vol 4 (3) ◽  
pp. 475-481
Author(s):  
Baghdad Science Journal

Iron , Cobalt , and Nickel powders with different particle sizes were subjected to sieving and He-Ne laser system to determine the particle size . 1wt% from each powders was blended carefully with 99wt% from Iraqi oil . Microscopic examination were carried for all samples to reveal the particle size distribution . A Siemens type SRS sequential wavelength dispersive(WDS) X-ray spectrometer was used to analyze all samples , and the XRF intensity were determined experimentally and theoretically for all suspended samples , Good agreement between theoretical and experimental results were found .


2019 ◽  
Vol 75 (3) ◽  
pp. 483-488 ◽  
Author(s):  
Kouhei Okitsu ◽  
Yasuhiko Imai ◽  
Yoshitaka Yoda

Non-coplanar 18-beam X-ray pinhole topographs for a silicon crystal were computer simulated by fast Fourier transforming the X-ray rocking amplitudes that were obtained by solving the n-beam (n = 18) Ewald–Laue dynamical theory (E-L&FFT method). They were in good agreement with the experimentally obtained images captured using synchrotron X-rays. From this result and further consideration based on it, it has been clarified that the X-ray diffraction intensities when n X-ray waves are simultaneously strong in the crystal can be computed for any n by using the E-L&FFT method.


2019 ◽  
Vol 26 (2) ◽  
pp. 445-449
Author(s):  
N. Patra ◽  
U. G. P. S. Sachan ◽  
S. SundarRajan ◽  
Sanjay Malhotra ◽  
Vijay Harad ◽  
...  

Setting up of the X-ray Magnetic Circular Dichroism (XMCD) measurement facility with hard X-rays at the Energy-Dispersive EXAFS beamline (BL-08) at the Indus-2 synchrotron source is reported. This includes the design and development of a water-cooled electromagnet having a highest magnetic field of 2 T in a good field volume of 125 mm3 and having a 10 mm hole throughout for passage of the synchrotron beam. This also includes the development of an (X–Z–θ) motion stage for the heavy electromagnet for aligning its axis and the beam hole along the synchrotron beam direction. Along with the above developments, also reported is the first XMCD signal measured on a thick Gd film in the above set-up which shows good agreement with the reported results. This is the first facility to carry out XMCD measurement with hard X-rays in India.


1964 ◽  
Vol 18 (6) ◽  
pp. 171-174 ◽  
Author(s):  
C. J. Toussaint ◽  
G. Vos

A method is presented for the determination of carbon in solid hydrocarbons using the intensity ratio of incoherent to coherent scattering of x-rays. The method is very rapid with precision at the 95% confidence level of about ±0.3%. The minimum sample weight necessary is 0 2 g. Analysis of samples by the x-ray method shows good agreement with values obtained by microcombustion. Finally a general comparison between different methods for carbon determination in solid hydrocarbons is discussed.


2002 ◽  
Vol 20 (1) ◽  
pp. 39-42 ◽  
Author(s):  
CHIEMI FUJIKAWA ◽  
NAOHIRO YAMAGUCHI ◽  
TADAYUKI OHCHI ◽  
TAMIO HARA ◽  
KATSUMI WATANABE ◽  
...  

We have constructed an X-ray photoelectron microscopic system. An X-ray source is a laser-produced plasma in a scheme of an X-ray laser experiment. X rays involving amplified spontaneous emissions (ASE) at 15.47 nm were delivered with a 10-Hz repetition rate from a compact X-ray laser system. X rays were collected and focused by a Schwarzschild optics coated with Mo/Si multilayers for a 15.47-nm X ray. Photoelectron signals due to the Ga 3d and As 3d electrons were observed, when a GaAs wafer was used as a sample. The spatial resolution of about 1 μm was confirmed.


Divergent-beam X-ray photography of single crystals by transmission can be used to study the ‘extinction’, that is, the diminution of the transmitted radiation that takes place at the Bragg reflexion angles. The intensity and geometry of the absorption lines observed give useful information about the texture of the crystal. Divergent beam photographs have shown that many crystals of organic compounds are unexpectedly perfect, and that sudden cooling to liquid-air temperatures will increase the mosaic character of their structure by an important factor and make them more suitable for structural analysis by the usual methods. Type I diamonds, and natural ice even near to its melting-point, are also found to possess a high degree of perfection, which cannot be removed by liquid-air treatment. The divergent beam method may be used for the determination of orientation, but it is important that the wave-length of X-rays employed should be correctly related to the size and nature of the crystal. In certain favourable cases it is possible to make precision measurements of lattice constant or of wave-length from divergent beam photographs, without the use of any kind of precision apparatus. By such means it has been shown that the C—C distance in individual diamonds varies from 1541.53(± 0-02) to 1541.27X, (1.54465-1-54440A), a difference presumably due to varying impurity content. Using diamond and a brass anticathode, the Zn Ka 1 wave-length, relative to Cu K Ka 1 as 1537.40X, is found to be 1432.21 ( ± 0-04) X. Temperature control would improve the accuracy of this measurement, which is, however, in good agreement with the latest value obtained by orthodox precision methods.


1999 ◽  
Vol 17 (3) ◽  
pp. 415-426 ◽  
Author(s):  
A.E. BUGROV ◽  
I.N. BURDONSKII ◽  
V.V. GAVRILOV ◽  
A.Yu. GOL'TSOV ◽  
S.Yu. GUS'KOV ◽  
...  

The interaction of powerful laser and X-ray pulses with planar low average density (0.5–10 mg/cm3) porous agar-agar targets was experimentally studied. At a laser power density of ∼5 × 1013 W/cm2 (λ = 1.054 μm) the laser light absorption and following energy transfer processes, as well as dynamics of produced plasma were investigated in detail with a variety of optical and X-ray diagnostic methods. Volume absorption is shown to occur in experiments with laser-irradiated agar targets. An extended laser energy deposition region filled with hot (0.8–1 keV) plasma is formed inside a porous target. The laser light absorption efficiency is as high as ∼80%. The emission of 2ω0 and 3ω0/2 harmonics from laser-produced plasma is observed over the time of the laser pulse even with agar targets of 0.5 mg/cm3 average density. Characteristics of energy transfer in low-density porous media are measured in experiments on illumination of agar targets by laser pulses or X rays emitted by a thin Cu converter. The hydrodynamic mechanism is responsible for the energy transfer in laser-illuminated porous targets and the radiative energy transfer seems to be dominant in the case of X-ray irradiation. The experimental data are in reasonable agreement with predictions of a developed theoretical model describing the hot plasma layer formation and the two-stage homogenization process within the illuminated porous targets.


1965 ◽  
Vol 122 (1-6) ◽  
pp. 148-152
Author(s):  
A. Heisel ◽  
To Ba Trono
Keyword(s):  
X Rays ◽  
X Ray ◽  

Abstract Reflection properties of the mica-cleavage plane (001) for x-rays were investigated up to the 20th order with the aid of an x-ray spectrometer and by the rotating-crystal method. They were compared with calculated structure amplitudes. The results of the different procedures were in good agreement. Intense spectra can be obtained especially in the 3rd and 5th, and still in the 4th, 8th, and 11th orders of reflection.


1974 ◽  
Vol 18 ◽  
pp. 136-145
Author(s):  
J. J. Hohlfelder ◽  
M. A. Palmer

AbstractA pinhole camera has been used to record low-energy x rays produced from CD2 microsphere irradiation with Sandia Laboratories four-beam, pulsed laser system. Camera useful energy range, spatial resolution, and x-ray energy sensitivity are discussed. Camera x-ray energy sensitivity which was determined by laboratory calibration is compared with measurements obtained with a multi-channel x-ray spectrometer. X-ray photographs of laser-irradiated microspheres are presented. Spatial information about the x-ray source derived from these photographs is discussed.


Sign in / Sign up

Export Citation Format

Share Document