scholarly journals Spatiotemporal evolution of a thin plasma foil with Kappa distribution

2014 ◽  
Vol 32 (4) ◽  
pp. 523-529 ◽  
Author(s):  
H. Mehdian ◽  
A. Kargarian ◽  
K. Hajisharifi

AbstractThe one-dimensional behavior of a thin plasma foil heated by laser is studied, emphasizing on the fully kinetic effects associated with initial energetic electrons using a relativistic kinetic 1D3V Particle-In-Cell code. For this purpose, the generalized Lorentzian (Kappa) function inclusive the high energy tail is employed for initial electron distribution. The presence of the initially high-energy electrons leads to a different ion energy spectrum than the initially Maxwellian distribution. It is shown for the smaller Kappa parameter k where the high energy tail of the electron distribution function becomes more significant, the electron cooling rate increases. Moreover, the spatiotemporal evolution of electric field is strongly affected by the initial super-thermal electrons.

1978 ◽  
Vol 20 (1) ◽  
pp. 47-60 ◽  
Author(s):  
S. Peter Gary

The linear Vlasov dispersion relation for electrostatic waves in a homogeneous plasma is studied for instabilities driven by an electron heat flux. A two Maxwellian model of the electron distribution function gives rise to three unstable modes: the electron beam, ion-acoustic and ion cyclotron heat flux instabilities. At large Te/Ti the ion-acoustic instability has the lowest threshold; at small Te/Ti the electron beam instability is dominant; and at intermediate values of Te/Ti the ion cyclotron mode is the first to go unstable. The presence of a high energy tail on the electron distribution function raises the value of the dimensionless heat flux qe/(nemev3e) at the ion-acoustic threshold, but increasing atomic number of the ions decreases this value.


1975 ◽  
Vol 30 (4) ◽  
pp. 451-460
Author(s):  
H. A. Claaßen

Abstract A selfconsistent solution with respect to both free and bound electron energy states is presented for a low temperature monatomic plasma. The deviations from a Maxwellian electron distribution under the action of unbalanced resonance transitions of the plasma atoms are incorporated in analytical form using a recursion formula, which links the high energy tail of the electron distribution function to its low energy part. The unbalance of the resonance level may be due to diffusion processes and/or radiation escape, which reflect the influence of the plasma boundaries. The population densities of the bound electron energy states are numerically determined by an iteration procedure. The calculations were performed for a cesium plasma both without and with consideration of resonance level diffusion and ambipolar diffusion. As is to be expected, the effect of a disturbance of the electron distribution on the population densities increases with decreasing electron density and increasing electron temperature.


2020 ◽  
Vol 498 (1) ◽  
pp. 799-820 ◽  
Author(s):  
J M Mehlhaff ◽  
G R Werner ◽  
D A Uzdensky ◽  
M C Begelman

ABSTRACT Rapid gamma-ray flares pose an astrophysical puzzle, requiring mechanisms both to accelerate energetic particles and to produce fast observed variability. These dual requirements may be satisfied by collisionless relativistic magnetic reconnection. On the one hand, relativistic reconnection can energize gamma-ray emitting electrons. On the other hand, as previous kinetic simulations have shown, the reconnection acceleration mechanism preferentially focuses high energy particles – and their emitted photons – into beams, which may create rapid blips in flux as they cross a telescope’s line of sight. Using a series of 2D pair-plasma particle-in-cell simulations, we explicitly demonstrate the critical role played by radiative (specifically inverse Compton) cooling in mediating the observable signatures of this ‘kinetic beaming’ effect. Only in our efficiently cooled simulations do we measure kinetic beaming beyond one light crossing time of the reconnection layer. We find a correlation between the cooling strength and the photon energy range across which persistent kinetic beaming occurs: stronger cooling coincides with a wider range of beamed photon energies. We also apply our results to rapid gamma-ray flares in flat-spectrum radio quasars, suggesting that a paradigm of radiatively efficient kinetic beaming constrains relevant emission models. In particular, beaming-produced variability may be more easily realized in two-zone (e.g. spine-sheath) set-ups, with Compton seed photons originating in the jet itself, rather than in one-zone external Compton scenarios.


2017 ◽  
Vol 12 (S331) ◽  
pp. 190-193
Author(s):  
S. Loru ◽  
A. Pellizzoni ◽  
E. Egron ◽  
N. Iacolina ◽  
S. Righini ◽  
...  

AbstractIn the framework of the Astronomical Validation and Early Science activities of the Sardinia Radio Telescope (SRT, www.srt.inaf.it), we performed 22 GHz imaging observations of SNR W44 and IC443. Thanks to the single-dish imaging performances of SRT and innovative ad hoc imaging techniques, we obtained maps that provide a detailed view of the structure of the remnants. We are planning to exploit the high-frequency radio data of SNRs to better characterize the spatially-resolved spectra and search for possible spectral steepening or breaks in selected SNR regions, assessing the high-energy tail of the region-dependent electron distribution.


2012 ◽  
Vol 78 (4) ◽  
pp. 327-331 ◽  
Author(s):  
N. LEMOS ◽  
J. L. MARTINS ◽  
J. M. DIAS ◽  
K. A. MARSH ◽  
A. PAK ◽  
...  

AbstractIn this work we present an experimental study where energetic ions were produced in an underdense 2.5 × 1019 cm−3 plasma created by a 50 fs Ti:Sapphire laser with 5 TWs of power. The plasma comprises 95% He and 5% N2 gases. Ionization-induced trapping of nitrogen K-shell electrons in the laser-induced wakefield generates an electron beam with a mean energy of 40 MeV and ~1 nC of charge. Some of the helium ions at the wake–vacuum interface are accelerated with a measured minimum ion energy of He1+ ions of 1.2 MeV and He2+ ions of 4 MeV. The physics of the interaction is studied with 2D particle-in-cell simulations. These reveal the formation of an ion filament on the axis of the plasma due to space charge attraction of the wakefield-accelerated high-charge electron bunch. Some of these high-energy electrons escape the plasma to form a sheath at the plasma–vacuum boundary that accelerates some of the ions in the filament in the forward direction. Electrons with energy less than the sheath potential cannot escape and return to the plasma boundary in a vortex-like motion. This in turn produces a time-varying azimuthal magnetic field, which generates a longitudinal electric field at the interface that further accelerates and collimates the ions.


Author(s):  
Y. J. Gu ◽  
Q. Yu ◽  
O. Klimo ◽  
T. Zh. Esirkepov ◽  
S. V. Bulanov ◽  
...  

Fast magnetic field annihilation in a collisionless plasma is induced by using TEM(1,0) laser pulse. The magnetic quadrupole structure formation, expansion and annihilation stages are demonstrated with 2.5-dimensional particle-in-cell simulations. The magnetic field energy is converted to the electric field and accelerate the particles inside the annihilation plane. A bunch of high energy electrons moving backwards is detected in the current sheet. The strong displacement current is the dominant contribution which induces the longitudinal inductive electric field.


2014 ◽  
Vol 21 (6) ◽  
pp. 062101 ◽  
Author(s):  
Omar Bouzit ◽  
Leila Ait Gougam ◽  
Mouloud Tribeche

Sign in / Sign up

Export Citation Format

Share Document