scholarly journals Kinetic beaming in radiative relativistic magnetic reconnection: a mechanism for rapid gamma-ray flares in jets

2020 ◽  
Vol 498 (1) ◽  
pp. 799-820 ◽  
Author(s):  
J M Mehlhaff ◽  
G R Werner ◽  
D A Uzdensky ◽  
M C Begelman

ABSTRACT Rapid gamma-ray flares pose an astrophysical puzzle, requiring mechanisms both to accelerate energetic particles and to produce fast observed variability. These dual requirements may be satisfied by collisionless relativistic magnetic reconnection. On the one hand, relativistic reconnection can energize gamma-ray emitting electrons. On the other hand, as previous kinetic simulations have shown, the reconnection acceleration mechanism preferentially focuses high energy particles – and their emitted photons – into beams, which may create rapid blips in flux as they cross a telescope’s line of sight. Using a series of 2D pair-plasma particle-in-cell simulations, we explicitly demonstrate the critical role played by radiative (specifically inverse Compton) cooling in mediating the observable signatures of this ‘kinetic beaming’ effect. Only in our efficiently cooled simulations do we measure kinetic beaming beyond one light crossing time of the reconnection layer. We find a correlation between the cooling strength and the photon energy range across which persistent kinetic beaming occurs: stronger cooling coincides with a wider range of beamed photon energies. We also apply our results to rapid gamma-ray flares in flat-spectrum radio quasars, suggesting that a paradigm of radiatively efficient kinetic beaming constrains relevant emission models. In particular, beaming-produced variability may be more easily realized in two-zone (e.g. spine-sheath) set-ups, with Compton seed photons originating in the jet itself, rather than in one-zone external Compton scenarios.

2014 ◽  
Vol 10 (S313) ◽  
pp. 27-32
Author(s):  
Elina Lindfors

AbstractThe detection of Flat Spectrum Radio Quasars (FSRQs) in the Very High Energy (VHE, E>100 GeV) range is challenging, mainly because of their steep soft spectra and distance. Nevertheless four FSRQs are now known to be VHE emitters. The detection of the VHE γ-rays has challenged the emission models of these sources. The sources are also found to exhibit very different behavior. I will give an overview of what is known about the VHE emission of these sources and about the multiwavelength signatures that are connected to the VHE gamma-ray emission.


2018 ◽  
Vol 84 (3) ◽  
Author(s):  
Krzysztof Nalewajko ◽  
Yajie Yuan ◽  
Martyna Chruślińska

First results are presented from kinetic numerical simulations of relativistic collisionless magnetic reconnection in a pair plasma that include radiation reaction from both synchrotron and inverse Compton (IC) processes, motivated by non-thermal high-energy astrophysical sources, including in particular blazars. These simulations are initiated from a configuration known as ‘ABC fields’ that evolves due to coalescence instability and generates thin current layers in its linear phase. Global radiative efficiencies, instability growth rates, time-dependent radiation spectra, lightcurves, variability statistics and the structure of current layers are investigated for a broad range of initial parameters. We find that the IC radiative signatures are generally similar to the synchrotron signatures. The luminosity ratio of IC to synchrotron spectral components, the Compton dominance, can be modified by more than one order of magnitude with respect to its nominal value. For very short cooling lengths, we find evidence for modification of the temperature profile across the current layers, no systematic compression of plasma density and very consistent profiles of the scalar product$\boldsymbol{E}\boldsymbol{\cdot }\boldsymbol{B}$of electric field$\boldsymbol{E}$and magnetic field$\boldsymbol{B}$. We decompose the profiles of$\boldsymbol{E}\boldsymbol{\cdot }\boldsymbol{B}$with the use of the Vlasov momentum equation, demonstrating a contribution from radiation reaction at the thickness scale consistent with the temperature profile.


2014 ◽  
Vol 10 (S313) ◽  
pp. 17-20
Author(s):  
W. Max-Moerbeck ◽  
J. L. Richards ◽  
T. Hovatta ◽  
V. Pavlidou ◽  
T. J. Pearson ◽  
...  

AbstractSince mid-2007 we have carried out a dedicated long-term monitoring programme at 15 GHz using the Owens Valley Radio Observatory 40 meter telescope (OVRO 40m). One of the main goals of this programme is to study the relation between the radio and gamma-ray emission in blazars and to use it as a tool to locate the site of high energy emission. Using this large sample of objects we are able to characterize the radio variability, and study the significance of correlations between the radio and gamma-ray bands. We find that the radio variability of many sources can be described using a simple power law power spectral density, and that when taking into account the red-noise characteristics of the light curves, cases with significant correlation are rare. We note that while significant correlations are found in few individual objects, radio variations are most often delayed with respect to the gamma-ray variations. This suggests that the gamma-ray emission originates upstream of the radio emission. Because strong flares in most known gamma-ray-loud blazars are infrequent, longer light curves are required to settle the issue of the strength of radio-gamma cross-correlations and establish confidently possible delays between the two. For this reason continuous multiwavelength monitoring over a longer time period is essential for statistical tests of jet emission models.


2020 ◽  
Vol 496 (1) ◽  
pp. 974-986 ◽  
Author(s):  
H Zhang ◽  
I M Christie ◽  
M Petropoulou ◽  
J M Rueda-Becerril ◽  
D Giannios

ABSTRACT The afterglow emission from gamma-ray bursts (GRBs) is believed to originate from a relativistic blast wave driven into the circumburst medium. Although the afterglow emission from radio up to X-ray frequencies is thought to originate from synchrotron radiation emitted by relativistic, non-thermal electrons accelerated by the blast wave, the origin of the emission at high energies (HE; ≳GeV) remains uncertain. The recent detection of sub-TeV emission from GRB 190114C by the Major Atmospheric Gamma Imaging Cherenkov Telescopes (MAGIC) raises further debate on what powers the very high energy (VHE; ≳300 GeV) emission. Here, we explore the inverse Compton scenario as a candidate for the HE and VHE emissions, considering two sources of seed photons for scattering: synchrotron photons from the blast wave (synchrotron self-Compton or SSC) and isotropic photon fields external to the blast wave (external Compton). For each case, we compute the multiwavelength afterglow spectra and light curves. We find that SSC will dominate particle cooling and the GeV emission, unless a dense ambient infrared photon field, typical of star-forming regions, is present. Additionally, considering the extragalactic background light attenuation, we discuss the detectability of VHE afterglows by existing and future gamma-ray instruments for a wide range of model parameters. Studying GRB 190114C, we find that its afterglow emission in the Fermi-Large Area Telescope (LAT) band is synchrotron dominated. The late-time Fermi-LAT measurement (i.e. t ∼ 104 s), and the MAGIC observation also set an upper limit on the energy density of a putative external infrared photon field (i.e. ${\lesssim} 3\times 10^{-9}\, {\rm erg\, cm^{-3}}$), making the inverse Compton dominant in the sub-TeV energies.


2003 ◽  
Vol 212 ◽  
pp. 150-151
Author(s):  
Paula Benaglia ◽  
Gustavo E. Romero

In the colliding wind region of early-type binaries, electrons can be accelerated up to relativistic energies, as demonstrated by the detection of non-thermal radio emission from several WR+OB systems. The particle acceleration region is exposed to strong photon fields, and inverse-Compton cooling of the electrons could result in a substantial high-energy non-thermal flux. We present here preliminary results of a study of the binaries WR 140, WR 146, and WR 147 in the light of recent radio and γ-ray observations. We show that under reasonable assumptions WR 140 can produce the γ-ray flux from the GRO-egret source 3EG J 2022+4317. WR 146 and WR 147 are below the detection threshold.


1996 ◽  
Vol 160 ◽  
pp. 315-322 ◽  
Author(s):  
Alice K. Harding

AbstractWith the increased sensitivity of gamma-ray detectors on the Compton Gamma-Ray Observatory (CGRO) the number of presently known gamma-ray pulsars has grown. The new detections are beginning to provide clues to the origin of the high-energy radiation in the form of emerging patterns and correlations among observed quantities such as gamma-ray efficiency and spectral index vs. age. But there are still many questions about the location of the emission and its relation to the radio, optical and X-ray pulses. This paper will review models for gamma-ray emission from pulsars and will examine how well the detailed predictions of these models account for the existing observations.


1996 ◽  
Vol 175 ◽  
pp. 287-288
Author(s):  
C.M. Raiteri ◽  
G. Ghisellini ◽  
M. Villata ◽  
G. DE FRANCESCO ◽  
S. Bosio ◽  
...  

The observations by the Compton Gamma Ray Observatory (CGRO) have shown that highly variable and radio-loud quasars emit a significant fraction of their energy in the γ band. According to the Inverse Compton model, the γ-ray emission is due to upscattering of soft (IR-optical-UV) photons by high energy particles. Optical monitoring is thus of great value in providing information on the mechanisms that rule the production of the seed photons for the γ-ray radiation and on the γ-ray emission itself. In particular, detection of variability correlations between optical and γ-ray emissions would be a crucial test for the theoretical predictions.


2014 ◽  
Vol 32 (4) ◽  
pp. 523-529 ◽  
Author(s):  
H. Mehdian ◽  
A. Kargarian ◽  
K. Hajisharifi

AbstractThe one-dimensional behavior of a thin plasma foil heated by laser is studied, emphasizing on the fully kinetic effects associated with initial energetic electrons using a relativistic kinetic 1D3V Particle-In-Cell code. For this purpose, the generalized Lorentzian (Kappa) function inclusive the high energy tail is employed for initial electron distribution. The presence of the initially high-energy electrons leads to a different ion energy spectrum than the initially Maxwellian distribution. It is shown for the smaller Kappa parameter k where the high energy tail of the electron distribution function becomes more significant, the electron cooling rate increases. Moreover, the spatiotemporal evolution of electric field is strongly affected by the initial super-thermal electrons.


2016 ◽  
Vol 12 (S324) ◽  
pp. 115-118
Author(s):  
Gabrijela Zaharijas ◽  
Jovana Petrović ◽  
Pasquale Serpico

AbstractThe Fermi-LAT gamma-ray data in the inner Galaxy region show several prominent features possibly related to the past activity of the Milky Way’s super massive black hole. At a large, 50 deg scale, the Fermi LAT revealed symmetric hour glass structures with hard energy spectra extending up to 100 GeV (and dubbed ‘the Fermi bubbles’). More recently and closer to the Galactic centre, at the 10 deg scale, several groups have claimed evidence for excess gamma-ray emission that appears symmetric around the Galactic center and has an energy spectrum peaking at few GeVs. We explore here the possibility that this emission originates in inverse Compton emission from high-energy electrons produced in a short duration, burst-like event injecting 1052 − 1053 erg, roughly 106 yrs ago. Several lines of evidence suggest that a series of ‘burst like’ events happened in the vicinity of our black hole in the past and gamma-ray observations may offer a new view of that scenario.


Author(s):  
Bindu Rani

Over the past decade, our knowledge of the $\gamma$-ray sky has been revolutionized by ground- and space-based observatories by detecting photons up to several hundreds of tera-electron volt (TeV) energies. A major population of the $\gamma$-ray bright objects are active galactic nuclei (AGN) with their relativistic jets pointed along our line-of-sight. Gamma-ray emission is also detected from nearby mis-aligned AGN such as radio galaxies. While the TeV-detected radio galaxies ($TeVRad$) only form a small fraction of the $\gamma$-ray detected AGN, their multi-wavelength study offers a unique opportunity to probe and pinpoint the high-energy emission processes and sites. Even in the absence of substantial Doppler beaming $TeVRad$ are extremely bright objects in the TeV sky (luminosities detected up to $10^{45}~erg~s^{-1}$), and exhibit flux variations on timescales shorter than the event-horizon scales (flux doubling timescale less than 5 minutes). Thanks to the recent advancement in the imaging capabilities of high-resolution radio interferometry (millimeter very long baseline interferometry, mm-VLBI), one can probe the scales down to less than 10 gravitational radii in $TeVRad$, making it possible not only to test jet launching models but also to pinpoint the high-energy emission sites and to unravel the emission mechanisms. This review provides an overview of the high-energy observations of $TeVRad$ with a focus on the emitting sites and radiation processes. Some recent approaches in simulations are also sketched. Observations by the near-future facilities like Cherenkov Telescope Array, short millimeter-VLBI, and high-energy polarimetry instruments will be crucial for discriminating the competing high-energy emission models.


Sign in / Sign up

Export Citation Format

Share Document