scholarly journals From stable walking to steering of a 3D bipedal robot with passive point feet

Robotica ◽  
2012 ◽  
Vol 30 (7) ◽  
pp. 1119-1130 ◽  
Author(s):  
Ching-Long Shih ◽  
J. W. Grizzle ◽  
Christine Chevallereau

SUMMARYThis paper exploits a natural symmetry present in a 3D robot in order to achieve asymptotically stable steering. The robot under study is composed of 5-links and unactuated point feet; it has 9 DoF (degree-of-freedom) in the single-support phase and six actuators. The control design begins with a hybrid feedback controller that stabilizes a straight-line walking gait for the 3D bipedal robot. The closed-loop system (i.e., robot plus controller) is shown to be equivariant under yaw rotations, and this property is used to construct a modification of the controller that has a local, but uniform, input-to-state stability (ISS) property, where the input is the desired turning direction. The resulting controller is capable of adjusting the net yaw rotation of the robot over a step in order to steer the robot along paths with mild curvature. An interesting feature of this work is that one is able to control the robot's motion along a curved path using only a single predefined periodic motion.

Author(s):  
Olugbenga M. Anubi ◽  
Carl D. Crane

This paper presents the control design and analysis of a non-linear model of a MacPherson suspension system equipped with a magnetorheological (MR) damper. The model suspension considered incorporates the kinematics of the suspension linkages. An output feedback controller is developed using an ℒ2-gain analysis based on the concept of energy dissipation. The controller is effectively a smooth saturated PID. The performance of the closed-loop system is compared with a purely passive MacPherson suspension system and a semi-active damper, whose damping coefficient is tunned by a Skyhook-Acceleration Driven Damping (SH-ADD) method. Simulation results show that the developed controller outperforms the passive case at both the rattle space, tire hop frequencies and the SH-ADD at tire hop frequency while showing a close performance to the SH-ADD at the rattle space frequency. Time domain simulation results confirmed that the control strategy satisfies the dissipative constraint.


Author(s):  
Arnaud Hamon ◽  
Yannick Aoustin

The design of a knee joint is a key issue in robotics and biomechanics to improve the compatibility between prosthesis and human movements and to improve the bipedal robot performances. We propose a novel design for the knee joint of a planar bipedal robot, based on a four-bar linkage. The dynamic model of the planar bipedal robot is calculated. We design walking reference trajectories with double support phases, single supports with a flat contact of the foot in the ground and single support phases with rotation of the foot around the toe. During the double support phase, both feet rotate. This phase is ended by an impact on the ground of the toe of one foot, the other foot taking off. The single support phase is ended by an impact of the swing foot heel, the other foot keeping contact with the ground through its toe. For both gaits, the reference trajectories of the rotational joints are prescribed by polynomial functions in time. A parametric optimization problem is presented for the determination of the parameters corresponding to the optimal cyclic walking gaits. The main contribution of this paper is the design of a dynamical stable walking gait with double support phases with feet rotation, impacts and single support phases for this novel bipedal robot.


2015 ◽  
Vol 12 (04) ◽  
pp. 1550018 ◽  
Author(s):  
Yannick Aoustin

A ballistic walking gait is designed for a planar biped equipped with a wearable walking assist device. The biped is a seven-link planar biped with two legs, two feet, and a trunk. The wearable walking assist device is composed of a bodyweight support, two upper legs, two lower legs, and two shoes. The dynamic model of the biped with its walking assist device, containing two closed kinematic chains, is calculated by virtually cutting each of both loops at one of their point. In the single support phase, the biped with its assist device moves due to the existence of a momentum, produced mechanically, without applying active torques in the inter-link joints. The biped and this assist device are controlled with impulsive torques at the instantaneous double support to obtain a cyclic gait. The impulsive torques are applied in the six inter-link joints of the biped and in several inter-link joints of the wearable walking assist device. The following distributions of impulsive torques, in the knees or the ankles, hips and knees, hips and ankles, or knees and ankles and the fully assist device, are compared with the case of no assistance for the biped. Each time, an infinity of solutions exists to find the impulsive torques. An energy cost functional defined from these impulsive torques is minimized to determine a unique solution. Numerical results show that for a given time period and a given length of the walking gait step, the assistance of the hips is a good compromise to help the biped.


2016 ◽  
Vol 39 (7) ◽  
pp. 1007-1016 ◽  
Author(s):  
Yu Wang ◽  
Bingxiu Bian

The electric sail (ES) is a novel propellantless propulsion concept, which extracts the solar wind momentum by repelling the positively charged ions. Due to the difficulty of attitude adjustment by the large flexible structure and the uncertainty of ion density, velocity and electron temperature by solar wind, there exist thrust input uncertainty and saturation with time-varying bounds for ES. The trajectory tracking problem for ES in three-dimensional (3-D) space is studied, and the composite sliding mode control scheme with corresponding guidance strategy is proposed for the single-input–multiple-output (SIMO) non-linear system. The hierarchical sliding surfaces are constructed with an auxiliary design system to analyse the effect of input saturation constraints and decouple the SIMO non-linear system to reduce the control complexity. Also, the disturbance estimation based on a super-twisting algorithm is employed to decrease the switch chattering and improve the system robustness. It is proved that all the sliding mode surfaces are asymptotically stable, and all the signals of the closed-loop system are bounded with input saturation constraints. Furthermore, all the signals are converging to zero and the closed-loop system is asymptotically stable without saturation. Finally, the simulation demonstrates the proposed composite sliding mode control is fit for ES 3-D trajectory tracking.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Jinsheng Xing ◽  
Naizheng Shi

This paper proposes a stable adaptive fuzzy control scheme for a class of nonlinear systems with multiple inputs. The multiple inputs T-S fuzzy bilinear model is established to represent the unknown complex systems. A parallel distributed compensation (PDC) method is utilized to design the fuzzy controller without considering the error due to fuzzy modelling and the sufficient conditions of the closed-loop system stability with respect to decay rateαare derived by linear matrix inequalities (LMIs). Then the errors caused by fuzzy modelling are considered and the method of adaptive control is used to reduce the effect of the modelling errors, and dynamic performance of the closed-loop system is improved. By Lyapunov stability criterion, the resulting closed-loop system is proved to be asymptotically stable. The main contribution is to deal with the differences between the T-S fuzzy bilinear model and the real system; a global asymptotically stable adaptive control scheme is presented for real complex systems. Finally, illustrative examples are provided to demonstrate the effectiveness of the results proposed in this paper.


2015 ◽  
Vol 727-728 ◽  
pp. 692-696
Author(s):  
Gui Ling Ju ◽  
Wei Hai Sun

This paper deals with the adaptive control design of stochastic nonholonomic system with uncertainties. The state-input scaling technique, stochastic Lyapunov-like theorem and back-stepping approach are used to design the feedback controller. The controllers guarantee all states of the closed-loop system are largely asymptotically stable in probability, In order to make the state scaling effective, a new switching control strategy based on the output measurement of the first subsystem is employed.


2014 ◽  
Vol 945-949 ◽  
pp. 2539-2542
Author(s):  
Hong Yang ◽  
Huan Huan Lü ◽  
Le Zhang

For the non-measurable states, a control of switched fuzzy systems is presented based on observer. Using switching technique and multiple Lyapunov function method, the fuzzy observer is built to ensure that for all allowable external disturbance the relevant closed-loop system is asymptotically stable. Moreover, switching strategy achieving system global asymptotic stability of the switched fuzzy system is given. In this model, a switching state feedback controller is presented. A simulation shows the feasibility and the effectiveness of the method.


10.14311/482 ◽  
2003 ◽  
Vol 43 (5) ◽  
Author(s):  
T. Vyhlídal ◽  
P. Zítek

The features of internal model control (IMC) design based on the first order anisochronic model are investigated in this paper. The structure of the anisochronic model is chosen in order to fit both the dominant pole and the dominant zero of the system dynamics being approximated. Thanks to its fairly plain structure, the model is suitable for use in IMC design. However, use of the anisochronic model in IMC design may result in so-called neutral dynamics of the closed loop. This phenomenon is studied in this paper via analysing the spectra of the closed loop system.


Author(s):  
Wulandari Puspita Sari ◽  
R. Sanggar Dewanto ◽  
Dadet Pramadihanto

Locomotion of humanoid robot depends on the mechanical characteristic of the robot. Walking on descending stairs with integrated control systems for the humanoid robot is proposed. The analysis of trajectory for descending stairs is calculated by the constrains of step length stair using fuzzy algorithm. The established humanoid robot on dynamically balance on this matter of zero moment point has been pretended to be consisting of single support phase and double support phase. Walking transition from single support phase to double support phase is needed for a smooth transition cycle. To accomplish the problem, integrated motion and controller are divided into two conditions: motion working on offline planning and controller working online walking gait generation. To solve the defect during locomotion of the humanoid robot, it is directly controlled by the fuzzy logic controller. This paper verified the simulation and the experiment for descending stair of KMEI humanoid robot. 


Author(s):  
Wankun Sirichotiyakul ◽  
Aykut C. Satici ◽  
Eric S. Sanchez ◽  
Pranav A. Bhounsule

Abstract In this work, we discuss the modeling, control, and implementation of a rimless wheel with torso. We derive and compare two control methodologies: a discrete-time controller (DT) that updates the controls once-per-step and a continuous-time controller (CT) that updates gains continuously. For the discrete controller, we use least-squares estimation method to approximate the Poincaré map on a certain section and use discrete-linear-quadratic-regulator (DQLR) to stabilize a (closed-form) linearization of this map. For the continuous controller, we introduce moving Poincaré sections and stabilize the transverse dynamics along these moving sections. For both controllers, we estimate the region of attraction of the closed-loop system using sum-of-squares methods. Analysis of the impact map yields a refinement of the controller that stabilizes a steady-state walking gait with minimal energy loss. We present both simulation and experimental results that support the validity of the proposed approaches. We find that the CT controller has a larger region of attraction and smoother stabilization as compared with the DT controller.


Sign in / Sign up

Export Citation Format

Share Document