A new variable structure controller for robot manipulators with a nonlinear PID sliding surface

Robotica ◽  
2012 ◽  
Vol 31 (4) ◽  
pp. 503-510 ◽  
Author(s):  
Khaled R. Atia

SUMMARYIn this paper a new sliding mode controller for set-point control of robot manipulators is proposed. The controller does not use any part of the robot dynamics in the control law. Thus, it is structurally simpler than other sliding mode controllers where the control law uses a nominal model of the robot dynamics. The controller uses a new nonlinear Proportional-Integral-Derivative (PID) sliding surface. The stability of the controlled robot dynamics is proved. On applying the boundary-layer approach to remove chattering, a nonlinear PID controller exists inside the boundary layer. This PID controller ensures that the error tend to zero asymptotically if there is no disturbances applied to the robot dynamics.

Author(s):  
Pournami Padmalatha ◽  
Susy Thomas

In this paper, a variable structure control law is proposed for discrete time sliding mode control so as to reduce both reaching time and quasi sliding mode band reduction. This new law is composed of two different sliding variable dynamics; one to achieve fast reaching and the other to counter its effect on widening the quasi sliding mode band. This is accomplished<br />by introducing a boundary layer around the sliding surface about which the transformation of the sliding variable dynamics takes place. This provides the flexibility to choose the initial dynamics in such a way as to speed up the reaching phase and then at the boundary transform this dynamics to one that reduces the quasi sliding mode band. Thus, the law effectively<br />coalesces the advantageous traits of hitherto proposed reaching laws that succeed in either the reduction of reaching phase or the elimination of quasi sliding mode band. The effectiveness of the proposed reaching law is validated through simulations.<br /><br />


Author(s):  
Kaveh Merat ◽  
Hoda Sadeghian ◽  
Hassan Salarieh ◽  
Aria Alasty

In this paper the synchronization of a class of nonlinear chaotic circuits known as Sprott Circuits is studied. The Synchronization is obtained using a variable structure method based on sliding mode control with time varying sliding surface and variable boundary layer in presence of external disturbance and parametric uncertainties. The simulation is presented to show the effectiveness of this method. The results show the high quality and good performance of the method presented in the paper for synchronization of different drive-response chaotic Sprott circuits.


Author(s):  
Minghui Zheng ◽  
Masayoshi Tomizuka

Vibration with multiple large peaks at high frequencies may cause significant performance degradation and have become a major concern in modern high precision control systems. To deal with such high-frequency peaks, it is proposed to design a frequency-shaped sliding mode controller based on H∞ synthesis. It obtains an ‘optimal’ filter to shape the sliding surface, and thus provides frequency-dependent control allocation. The proposed frequency-shaping method assures the stability in the presence of multiple-peak vibration sources, and minimizes the weighted H∞ norm of the sliding surface dynamics. The evaluation is performed on a simulated hard disk drive with actual vibration sources from experiments, and the effectiveness of large vibration peak suppression is demonstrated.


Author(s):  
Shubo Yang ◽  
Xi Wang

Limit protection, which frequently exists as an auxiliary part in control systems, is not the primary motive of control but is a necessary guarantee of safety. As in the case of aircraft engine control, the main objective is to provide the desired thrust based on the position of the throttle; nevertheless, limit protection is indispensable to keep the engine operating within limits. There are plenty of candidates that can be applied to design the regulators for limit protection. PID control with gain-scheduling technique has been used for decades in the aerospace industry. This classic approach suggests linearizing the original nonlinear model at different power-level points, developing PID controllers correspondingly, and then scheduling the linear time-invariant (LTI) controllers according to system states. Sliding mode control (SMC) is well-known with mature theories and numerous successful applications. With the one-sided convergence property, SMC is especially suitable for limit protection tasks. In the case of aircraft engine control, SMC regulators have been developed to supplant traditional linear regulators, where SMC can strictly keep relevant outputs within their limits and improve the control performance. In aircraft engine control field, we all know that the plant is a nonlinear system. However, the present design of the sliding controller is carried out with linear models, which severely restricts the valid scope of the controller. Even if the gain scheduling technique is adopted, the stability of the whole systems cannot be theoretically proved. Research of linear parameter varying (LPV) system throws light on a class of nonlinear control problems. In present works, we propose a controller design method based on the LPV model to solve the engines control problem and achieve considerable effectiveness. In this paper, we discuss the design of a sliding controller for limit protection task of aircraft engines, the plant of which is described as an LPV system instead of LTI models. We define the sliding surface as tracking errors and, with the aid of vertex property, present the stability analysis of the closed-loop system on the sliding surface. An SMC law is designed to guarantee that the closed-loop system is globally attracted to the sliding surface. Hot day (ISA+30° C) takeoff simulations based on a reliable turbofan model are presented, which test the proposed method for temperature protection and verify its stability and effectiveness.


1998 ◽  
Vol 123 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Mooncheol Won ◽  
J. K. Hedrick

This paper presents a discrete-time adaptive sliding control method for SISO nonlinear systems with a bounded disturbance or unmodeled dynamics. Control and adaptation laws considering input saturation are obtained from approximately discretized nonlinear systems. The developed disturbance adaptation or estimation law is in a discrete-time form, and differs from that of conventional adaptive sliding mode control. The closed-loop poles of the feedback linearized sliding surface and the adaptation error dynamics can easily be placed. It can be shown that the adaptation error dynamics can be decoupled from sliding surface dynamics using the proposed scheme. The proposed control law is applied to speed tracking control of an automatic engine subject to unknown external loads. Simulation and experimental results verify the advantages of the proposed control law.


2014 ◽  
Vol 1016 ◽  
pp. 649-654
Author(s):  
Ya Feng Niu ◽  
Yong Ming Gao

This paper discusses the cooperative control for formation keeping of fractionated spacecraft, which is a new concept in recent years. For system of second-order differential equations of formation flying dynamics, knowledge of graph and consensus theory is introduced in study. By means of the idea of sliding mode control, we design a tracking control law for time-varying desired signal. Via exchanging error information among modules, the control law can make errors synchronized up to zero to achieve tracking. Relative velocity information between modules is not needed in this control law, which will efficiently reduce the requirements for relative navigation between modules. Then we prove the stability of the control system. Finally numerical simulation results show the effectiveness of the control law. By configuring the control parameters reasonably, we can achieve high degree of control accuracy.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Difei Liu ◽  
Zhiyong Tang ◽  
Zhongcai Pei

A novel variable structure compensation PID control, VSCPID in short, is proposed for trajectory tracking of asymmetrical hydraulic cylinder systems. This new control method improves the system robustness by adding a variable structure compensation term to the conventional PID control. The variable structure term is designed according to sliding mode control method and therefore could compensate the disturbance and uncertainty. Meanwhile, the proposed control method avoids the requirements for exact knowledge of the systems associated with equivalent control value in SMC that means the controller is simple and easy to design. The stability analysis of this approach is conducted with Lyapunov function, and the global stability condition applied to choose control parameters is provided. Simulation results show the VSCPID control can achieve good tracking performances and high robustness compared with the other control methods under the uncertainties and varying load conditions.


Sign in / Sign up

Export Citation Format

Share Document