A Multibody Dynamics Approach to Limit Cycle Walking

Robotica ◽  
2019 ◽  
Vol 37 (10) ◽  
pp. 1804-1822
Author(s):  
Jiawei He ◽  
Gexue Ren

SummaryThough significant efforts are made to develop mathematical models of the limit cycle walking (LCW), there is still a lack of a general and efficient framework to study the periodic solution and robustness of a complex model like human with knees, ankles and flat feet. In this study, a numerical framework of the LCW based on general multibody system dynamics is proposed, especially the impacts between the feet and the ground are modeled by Hunt–Crossley normal contact force and Coulomb friction force, and the modeling of the knee locking is presented as well. Moreover, event-based operating strategies are presented to deal with controls for the ground clearance and the knee locking. Importantly, a fast and efficient two-step algorithm is proposed to search for stable periodic gaits. Finally, maximum allowable disturbance is adopted as the index for stability analysis. All these features could be readily implemented in the framework. The presented solution is verified on a compass-like passive dynamic walking (PDW) walker with results in the literature. Based on this framework, a fairly complicated level-walking walkers with ankles and knees under control are analyzed and their periodic gaits are obtained, and surprisingly, double stable periodic gaits with, respectively, low speed and high speed are found.

Author(s):  
Khaled E. Zaazaa ◽  
Brian Whitten ◽  
Brian Marquis ◽  
Erik Curtis ◽  
Magdy El-Sibaie ◽  
...  

Accurate prediction of railroad vehicle performance requires detailed formulations of wheel-rail contact models. In the past, most dynamic simulation tools used an offline wheel-rail contact element based on look-up tables that are used by the main simulation solver. Nowadays, the use of an online nonlinear three-dimensional wheel-rail contact element is necessary in order to accurately predict the dynamic performance of high speed trains. Recently, the Federal Railroad Administration, Office of Research and Development has sponsored a project to develop a general multibody simulation code that uses an online nonlinear three-dimensional wheel-rail contact element to predict the contact forces between wheel and rail. In this paper, several nonlinear wheel-rail contact formulations are presented, each using the online three-dimensional approach. The methods presented are divided into two contact approaches. In the first Constraint Approach, the wheel is assumed to remain in contact with the rail. In this approach, the normal contact forces are determined by using the technique of Lagrange multipliers. In the second Elastic Approach, wheel/rail separation and penetration are allowed, and the normal contact forces are determined by using Hertz’s Theory. The advantages and disadvantages of each method are presented in this paper. In addition, this paper discusses future developments and improvements for the multibody system code. Some of these improvements are currently being implemented by the University of Illinois at Chicago (UIC). In the accompanying “Part 2” and “Part 3” to this paper, numerical examples are presented in order to demonstrate the results obtained from this research.


2010 ◽  
Vol 43 (14) ◽  
pp. 1181-1186
Author(s):  
Leonid B. Freidovich ◽  
Anton S. Shiriaev

1996 ◽  
Vol 317 ◽  
pp. 91-109 ◽  
Author(s):  
Po Ki Yuen ◽  
Haim H. Bau

It is demonstrated experimentally and theoretically that through the use of a nonlinear feedback controller, one can render a subcritical Hopf bifurcation supercritical and thus dramatically modify the nature of the flow in a thermal convection loop heated from below and cooled from above. In particular, we show that the controller can replace the naturally occurring chaotic motion with a stable, periodic limit cycle. The control strategy consists of sensing the deviation of fluid temperatures from desired values at a number of locations inside the loop and then altering the wall heating to counteract such deviations.


Robotica ◽  
2010 ◽  
Vol 29 (5) ◽  
pp. 657-665 ◽  
Author(s):  
Yong Hu ◽  
Gangfeng Yan ◽  
Zhiyun Lin

SUMMARYThis paper investigates the stable-running problem of a planar underactuated biped robot, which has two springy telescopic legs and one actuated joint in the hip. After modeling the robot as a hybrid system with multiple continuous state spaces, a natural passive limit cycle, which preserves the system energy at touchdown, is found using the method of Poincaré shooting. It is then checked that the passive limit cycle is not stable. To stabilize the passive limit cycle, an event-based feedback control law is proposed, and also to enlarge the basin of attraction, an additive passivity-based control term is introduced only in the stance phase. The validity of our control strategies is illustrated by a series of numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document