Multi-objective optimal trajectory planning for manipulators in the presence of obstacles

Robotica ◽  
2021 ◽  
pp. 1-19
Author(s):  
Xiaofu Zhang ◽  
Guanglin Shi

Abstract This paper presents a trajectory planning method based on multi-objective optimization, including time optimal and jerk optimal for the manipulators in the presence of obstacles. The proposed method generates a trajectory configuration in the joint space with kinematic and obstacle constraints using quintic B-spline. Gilbert–Johnson–Keerthi detecting algorithm is utilized to detect whether there is a collision and obtain the minimum distance between the manipulator and obstacles. The degree of constraint violations is introduced to redefine the Pareto domination, and the constrained multi-objective particle swarm algorithm (CMOPSO) is adopted to solve the time-jerk optimization problem. Finally, the Z-type fuzzy membership function is proposed to select the best optimal solution in the Pareto front obtained by CMOPSO. Test results show the effectiveness of the proposed method.

Author(s):  
Mingxing Yuan ◽  
Bin Yao ◽  
Dedong Gao ◽  
Xiaocong Zhu ◽  
Qingfeng Wang

Time optimal trajectory planning under various hard constraints plays a significant role in simultaneously meeting the requirements on high productivity and high accuracy in the fields of both machining tools and robotics. In this paper, the problem of time optimal trajectory planning is first formulated. A novel back and forward check algorithm is subsequently proposed to solve the minimum time feed-rate optimization problem. The basic idea of the algorithm is to search the feasible solution in the specified interval using the back or forward operations. Four lemmas are presented to illustrate the calculating procedure of optimal solution and the feasibility of the proposed algorithm. Both the elliptic curve and eight profile are used as case studies to verify the effectiveness of the proposed algorithm.


Author(s):  
Eric Barnett ◽  
Clément Gosselin

Time-optimal trajectory planning (TOTP) is a well-studied problem in robotics and manufacturing, which involves the minimization of the time required for the operation point of a mechanism to follow a path, subject to a set of constraints. A TOTP technique, designed for fully specified paths that include abrupt changes in direction, was previously introduced by the first author of this paper: an incremental approach called minimum-time trajectory shaping (MTTS) was used. In the current paper, MTTS is converted to a dynamic technique and adapted for use with cable-driven parallel robots, which exhibit cable tension and motor torque constraints. For many applications, cable tensions along a path are verified after trajectory generation, rather than imposed during trajectory generation. For the technique proposed in this paper, the cable-tension constraints are imposed directly and fully integrated with MTTS, during trajectory generation, thus maintaining a time-optimal solution. MTTS is applied to a test system and path, and compared to the bang–bang technique. With the same constraints, the results obtained with both techniques are found to be very close. However, MTTS can be applied to a wider variety of paths, and accepts constraints on jerk and total acceleration that would be difficult to apply using the bang–bang approach.


Author(s):  
Eric Barnett ◽  
Clément Gosselin

Time-optimal trajectory planning (TOTP) is a well-studied problem in robotics and manufacturing, which involves the minimization of the time required for the operation point of a mechanism to follow a path, subject to a set of constraints. A TOTP technique, designed for fully-specified paths that include abrupt changes in direction, was previously introduced by the first author of this paper: an incremental approach called minimum-time trajectory shaping (MTTS) was used. In the current paper, MTTS is adapted for use with cable-driven parallel robots, which exhibit the additional constraint that all cable tensions remain positive along a path to be followed. For many applications, cable tensions along a path are verified after trajectory generation, rather than imposed during trajectory generation. For the technique proposed in this paper, the minimum-tension constraint is imposed directly and is fully integrated with MTTS, during trajectory generation, thus maintaining a time-optimal solution. This approach is relevant for cable-driven mechanism applications that involve high accelerations, particularly in the vertical direction.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Kaipeng Zhang ◽  
Ning Liu ◽  
Gao Wang

To solve the problem that the time-consuming optimization process of Genetic Algorithm (GA) can erode the expected time-saving brought by the algorithm, time-optimal trajectory planning based on cubic spline was used, after the modification to classical fitness sharing function of NGA, a dual-threaded method utilizing elite strategy characteristic was designed which was based on Niche Genetic Algorithm (NGA) with the fitness sharing technique. The simulation results show that the proposed method can mitigate the contradiction of the long term the optimization algorithm takes but a short running time the trajectory gets, demonstrating the effectiveness of the proposed method. Besides, the improved fitness sharing technique has reduced the subjective process of determining relevant parameters and the optimized trajectory results met performance constraints of the robot joints.


Author(s):  
Amruta Rout ◽  
Deepak Bbvl ◽  
Bibhuti B. Biswal

Purpose This paper aims to present an optimal trajectory planning for industrial MOTOMAN MA1440A gas metal arc welding system. A new and efficient evolutionary algorithm, enhanced multi-objective teaching learning-based optimization (EMOTLBO) method, i.e. TLBO with non-dominated sorting approach has been proposed to obtain the optimal joint trajectory for the defined weld seam path. Design/methodology/approach The joint trajectory of the welding robot need to be computed in an optimal manner for proper torch orientation, smooth travel of the robot along the weld path and for achieving higher positional accuracy. This can be achieved by limiting the kinematic and dynamic variations of the robot joints like joint jerks, squared acceleration and torque induced in the joints while travel of the robot along the weld path. Also, the robot travel should be done within minimum possible time for maintaining productivity. This leads to a multi-objective optimization problem which needs to be solved for maintaining proper orientation of the robot end effector. EMOTLBO has been proposed to obtain the Pareto front consisting of optimal solutions. The fuzzy membership function has been used to obtain the optimal solution from the Pareto front with best trade-off between objectives. Findings The proposed method has been implanted in MATLAB R2017a for simulation results. The joint positions have been used to program the robot for performing welding operation along the weld seam. From the simulation and experimental results, it can be concluded that the proposed approach can be effectively used for optimal trajectory planning of MOTOMAN MA 1440 A arc welding robot system as a very smooth and uniform weld bead has been obtained with maximum weld quality. Originality/value In this paper, a novel approach for optimal trajectory planning welding arc robot has been performed. Though trajectory planning of industrial robots has been done before, it has not been done yet for welding robot. The objectives are formulated taking in consideration of requirement of welding process like minimization of joint jerks and torques induced during welding operation due to travel of robot with the effect of arc spatter, minimization of squared acceleration for maintaining constant joint velocity and finally minimization of total travel time for maintaining productivity.


2021 ◽  
Vol 13 (7) ◽  
pp. 168781402110346
Author(s):  
Yunyue Zhang ◽  
Zhiyi Sun ◽  
Qianlai Sun ◽  
Yin Wang ◽  
Xiaosong Li ◽  
...  

Due to the fact that intelligent algorithms such as Particle Swarm Optimization (PSO) and Differential Evolution (DE) are susceptible to local optima and the efficiency of solving an optimal solution is low when solving the optimal trajectory, this paper uses the Sequential Quadratic Programming (SQP) algorithm for the optimal trajectory planning of a hydraulic robotic excavator. To achieve high efficiency and stationarity during the operation of the hydraulic robotic excavator, the trade-off between the time and jerk is considered. Cubic splines were used to interpolate in joint space, and the optimal time-jerk trajectory was obtained using the SQP with joint angular velocity, angular acceleration, and jerk as constraints. The optimal angle curves of each joint were obtained, and the optimal time-jerk trajectory planning of the excavator was realized. Experimental results show that the SQP method under the same weight is more efficient in solving the optimal solution and the optimal excavating trajectory is smoother, and each joint can reach the target point with smaller angular velocity, and acceleration change, which avoids the impact of each joint during operation and conserves working time. Finally, the excavator autonomous operation becomes more stable and efficient.


2015 ◽  
Vol 713-715 ◽  
pp. 800-804 ◽  
Author(s):  
Gang Chen ◽  
Cong Wei ◽  
Qing Xuan Jia ◽  
Han Xu Sun ◽  
Bo Yang Yu

In this paper, a kind of multi-objective trajectory optimization method based on non-dominated sorting genetic algorithm II (NSGA-II) is proposed for free-floating space manipulator. The aim is to optimize the motion path of the space manipulator with joint angle constraints and joint velocity constraints. Firstly, the kinematics and dynamics model are built. Secondly, the 3-5-3 piecewise polynomial is selected as interpolation method for trajectory planning of joint space. Thirdly, three objective functions are established to simultaneously minimize execution time, energy consumption and jerk of the joints. At last, the objective functions are combined with the NSGA-II algorithm to get the Pareto optimal solution set. The effectiveness of the mentioned method is verified by simulations.


2020 ◽  
pp. 105-113
Author(s):  
M. Farsi

The main aim of this research is to present an optimization procedure based on the integration of operability framework and multi-objective optimization concepts to find the single optimal solution of processes. In this regard, the Desired Pareto Index is defined as the ratio of desired Pareto front to the Pareto optimal front as a quantitative criterion to analyze the performance of chemical processes. The Desired Pareto Front is defined as a part of the Pareto front that all outputs are improved compared to the conventional operating condition. To prove the efficiency of proposed optimization method, the operating conditions of ethane cracking process is optimized as a base case. The ethylene and methane production rates are selected as the objectives in the formulated multi-objective optimization problem. Based on the simulation results, applying the obtained operating conditions by the proposed optimization procedure on the ethane cracking process improve ethylene production by about 3% compared to the conventional condition.  


Sign in / Sign up

Export Citation Format

Share Document