Stride segmentation of inertial sensor data using statistical methods for different walking activities

Robotica ◽  
2021 ◽  
pp. 1-14
Author(s):  
Rahul Jain ◽  
Vijay Bhaskar Semwal ◽  
Praveen Kaushik

Abstract Human gait data can be collected using inertial measurement units (IMUs). An IMU is an electronic device that uses an accelerometer and gyroscope to capture three-axial linear acceleration and three-axial angular velocity. The data so collected are time series in nature. The major challenge associated with these data is the segmentation of signal samples into stride-specific information, that is, individual gait cycles. One empirical approach for stride segmentation is based on timestamps. However, timestamping is a manual technique, and it requires a timing device and a fixed laboratory set-up which usually restricts its applicability outside of the laboratory. In this study, we have proposed an automatic technique for stride segmentation of accelerometry data for three different walking activities. The autocorrelation function (ACF) is utilized for the identification of stride boundaries. Identification and extraction of stride-specific data are done by devising a concept of tuning parameter ( $t_{p}$ ) which is based on minimum standard deviation ( $\sigma$ ). Rigorous experimentation is done on human activities and postural transition and Osaka University – Institute of Scientific and Industrial Research gait inertial sensor datasets. Obtained mean stride duration for level walking, walking upstairs, and walking downstairs is 1.1, 1.19, and 1.02 s with 95% confidence interval [1.08, 1.12], [1.15, 1.22], and [0.97, 1.07], respectively, which is on par with standard findings reported in the literature. Limitations of accelerometry and ACF are also discussed. stride segmentation; human activity recognition; accelerometry; gait parameter estimation; gait cycle; inertial measurement unit; autocorrelation function; wearable sensors; IoT; edge computing; tinyML.

2019 ◽  
Vol 5 (1) ◽  
pp. 183-186
Author(s):  
Michael Munz ◽  
Thomas Engleder

AbstractIn this work, an assistant system is presented for the automatic assessment of falling and belaying in sport climbing. Both climber and belayer are equipped with inertial measurement unit (IMU) sensors. Forces as well as movements in the form of multi-dimensional accelerations on the legs and torso are captured. It can be shown that forces can be estimated by means of IMU sensors, thus eliminating a complex force measurement unit in the safety chain. Furthermore, the data can be used to assess both falling and belaying by automatic segmentation and evaluation algorithms. The sensor data should later be evaluated automatically in order to objectively measure faulty behavior by climber or belayer (for example wrong jump-off behavior, too hard protection, etc.). The overall goal is to provide quantified feedback in fall training for injury and accident prevention.


Author(s):  
R. Zhang ◽  
M. Loschonsky ◽  
L.M. Reindl

Previous studies show that inertial sensor-based personal positioning benefited from Zero Velocity Update (ZUPT) method by resetting the foot speed at every foot step. However, only the solution for normal pedestrian movement with small velocity like walking was given. This paper presents a novel ZUPT system which can be used in a wide range of human activities, including walking, running, and stair climbing by using two inertial measurement unit (IMU) modules. One is attached on the centre of the human body for human activities’ classification and recognition. The other one is mounted on the foot for ZUPT algorithm implementation based on the result of activities’ recognition. Test cases include stair climbing by walking and running, walking, fast walking, and running. In all cases, most of the steps are able to be detected and the new ZUPT system can be successfully implemented.


Biosensors ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 109
Author(s):  
Binbin Su ◽  
Christian Smith ◽  
Elena Gutierrez Farewik

Gait phase recognition is of great importance in the development of assistance-as-needed robotic devices, such as exoskeletons. In order for a powered exoskeleton with phase-based control to determine and provide proper assistance to the wearer during gait, the user’s current gait phase must first be identified accurately. Gait phase recognition can potentially be achieved through input from wearable sensors. Deep convolutional neural networks (DCNN) is a machine learning approach that is widely used in image recognition. User kinematics, measured from inertial measurement unit (IMU) output, can be considered as an ‘image’ since it exhibits some local ‘spatial’ pattern when the sensor data is arranged in sequence. We propose a specialized DCNN to distinguish five phases in a gait cycle, based on IMU data and classified with foot switch information. The DCNN showed approximately 97% accuracy during an offline evaluation of gait phase recognition. Accuracy was highest in the swing phase and lowest in terminal stance.


2021 ◽  
Vol 906 (1) ◽  
pp. 012069
Author(s):  
Stanislav Hodas ◽  
Jana Izvoltova ◽  
Donatas Rekus

Abstract The inertial measurement unit is an electronic device built-in practically in any controlled or autonomous technology used for land mapping. It is based on a combination of accelerometers and gyroscopes and sometimes magnetometers used for relative orientation and navigation. The paper is focused on functions and trends of an inertial measurement unit, which is a part of inertial navigation indicator of position and velocity of moving devices on the ground, above and below ground in real-time.


2021 ◽  
Vol 10 (1) ◽  
pp. 29
Author(s):  
Niharika Gogoi ◽  
Zixuan Yu ◽  
Yichun Qin ◽  
Jens Kirchner ◽  
Georg Fischer

Human gait analysis is a growing field of research interest in medical treatment, sports training and structural health monitoring. In our study, we propose a low-cost insole design with wearable sensors based on piezoelectric discs (PZT) and an inertial measurement unit (IMU) to acquire the human gait. The sensors are placed at three points of a shoe sole: toe, metatarsal and heel. The human gait obtained from such an insole layout is significantly affected by plantar pressure distribution and alignment of the feet. The PZT sensors give an insight into the pressure map under the feet, and the IMUs record projection and orientation of the feet.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 949 ◽  
Author(s):  
Imad Gohar ◽  
Qaiser Riaz ◽  
Muhammad Shahzad ◽  
Muhammad Zeeshan Ul Hasnain Hashmi ◽  
Hasan Tahir ◽  
...  

Person re-identification (re-ID) is among the essential components that play an integral role in constituting an automated surveillance environment. Majorly, the problem is tackled using data acquired from vision sensors using appearance-based features, which are strongly dependent on visual cues such as color, texture, etc., consequently limiting the precise re-identification of an individual. To overcome such strong dependence on visual features, many researchers have tackled the re-identification problem using human gait, which is believed to be unique and provide a distinctive biometric signature that is particularly suitable for re-ID in uncontrolled environments. However, image-based gait analysis often fails to extract quality measurements of an individual’s motion patterns owing to problems related to variations in viewpoint, illumination (daylight), clothing, worn accessories, etc. To this end, in contrast to relying on image-based motion measurement, this paper demonstrates the potential to re-identify an individual using inertial measurements units (IMU) based on two common sensors, namely gyroscope and accelerometer. The experiment was carried out over data acquired using smartphones and wearable IMUs from a total of 86 randomly selected individuals including 49 males and 37 females between the ages of 17 and 72 years. The data signals were first segmented into single steps and strides, which were separately fed to train a sequential deep recurrent neural network to capture implicit arbitrary long-term temporal dependencies. The experimental setup was devised in a fashion to train the network on all the subjects using data related to half of the step and stride sequences only while the inference was performed on the remaining half for the purpose of re-identification. The obtained experimental results demonstrate the potential to reliably and accurately re-identify an individual based on one’s inertial sensor data.


2017 ◽  
Vol 870 ◽  
pp. 79-84
Author(s):  
Zhen Xian Fu ◽  
Guang Ying Zhang ◽  
Yu Rong Lin ◽  
Yang Liu

Rapid progress in Micro-Electromechanical System (MEMS) technique is making inertial sensors increasingly miniaturized, enabling it to be widely applied in people’s everyday life. Recent years, research and development of wireless input device based on MEMS inertial measurement unit (IMU) is receiving more and more attention. In this paper, a survey is made of the recent research on inertial pens based on MEMS-IMU. First, the advantage of IMU-based input is discussed, with comparison with other types of input systems. Then, based on the operation of an inertial pen, which can be roughly divided into four stages: motion sensing, error containment, feature extraction and recognition, various approaches employed to address the challenges facing each stage are introduced. Finally, while discussing the future prospect of the IMU-based input systems, it is suggested that the methods of autonomous and portable calibration of inertial sensor errors be further explored. The low-cost feature of an inertial pen makes it desirable that its calibration be carried out independently, rapidly, and portably. Meanwhile, some unique features of the operational environment of an inertial pen make it possible to simplify its error propagation model and expedite its calibration, making the technique more practically viable.


2021 ◽  
Vol 3 ◽  
Author(s):  
Marit P. van Dijk ◽  
Manon Kok ◽  
Monique A. M. Berger ◽  
Marco J. M. Hoozemans ◽  
DirkJan H. E. J. Veeger

In sports, inertial measurement units are often used to measure the orientation of human body segments. A Madgwick (MW) filter can be used to obtain accurate inertial measurement unit (IMU) orientation estimates. This filter combines two different orientation estimates by applying a correction of the (1) gyroscope-based estimate in the direction of the (2) earth frame-based estimate. However, in sports situations that are characterized by relatively large linear accelerations and/or close magnetic sources, such as wheelchair sports, obtaining accurate IMU orientation estimates is challenging. In these situations, applying the MW filter in the regular way, i.e., with the same magnitude of correction at all time frames, may lead to estimation errors. Therefore, in this study, the MW filter was extended with machine learning to distinguish instances in which a small correction magnitude is beneficial from instances in which a large correction magnitude is beneficial, to eventually arrive at accurate body segment orientations in IMU-challenging sports situations. A machine learning algorithm was trained to make this distinction based on raw IMU data. Experiments on wheelchair sports were performed to assess the validity of the extended MW filter, and to compare the extended MW filter with the original MW filter based on comparisons with a motion capture-based reference system. Results indicate that the extended MW filter performs better than the original MW filter in assessing instantaneous trunk inclination (7.6 vs. 11.7° root-mean-squared error, RMSE), especially during the dynamic, IMU-challenging situations with moving athlete and wheelchair. Improvements of up to 45% RMSE were obtained for the extended MW filter compared with the original MW filter. To conclude, the machine learning-based extended MW filter has an acceptable accuracy and performs better than the original MW filter for the assessment of body segment orientation in IMU-challenging sports situations.


Sign in / Sign up

Export Citation Format

Share Document