scholarly journals Geochemical signatures of mineralizing events in the Juomasuo Au–Co deposit, Kuusamo belt, northeastern Finland

Author(s):  
Mikael Vasilopoulos ◽  
Ferenc Molnár ◽  
Hugh O’Brien ◽  
Yann Lahaye ◽  
Marie Lefèbvre ◽  
...  

AbstractThe Juomasuo Au–Co deposit, currently classified as an orogenic gold deposit with atypical metal association, is located in the Paleoproterozoic Kuusamo belt in northeastern Finland. The volcano-sedimentary sequence that hosts the deposit was intensely altered, deformed, and metamorphosed to greenschist facies during the 1.93–1.76 Ga Svecofennian orogeny. In this study, we investigate the temporal relationship between Co and Au deposition and the relationship of metal enrichment with protolith composition and alteration mineralogy by utilizing lithogeochemical data and petrographic observations. We also investigate the nature of fluids involved in deposit formation based on sulfide trace element and sulfur isotope LA-ICP-MS data together with tourmaline mineral chemistry and boron isotopes. Classification of original protoliths was made on the basis of geochemically immobile elements; recognized lithologies are metasedimentary rocks, mafic, intermediate-composition, and felsic metavolcanic rocks, and an ultramafic sill. The composition of the host rocks does not control the type or intensity of mineralization. Sulfur isotope values (δ34S − 2.6 to + 7.1‰) and trace element data obtained for pyrite, chalcopyrite, and pyrrhotite indicate that the two geochemically distinct Au–Co and Co ore types formed from fluids of different compositions and origins. A reduced, metamorphic fluid was responsible for deposition of the pyrrhotite-dominant, Co-rich ore, whereas a relatively oxidized fluid deposited the pyrite-dominant Au–Co ore. The main alteration and mineralization stages at Juomasuo are as follows: (1) widespread albitization that predates both types of mineralization; (2) stage 1, Co-rich mineralization associated with chlorite (± biotite ± amphibole) alteration; (3) stage 2, Au–Co mineralization related to sericitization. Crystal-chemical compositions for tourmaline suggest the involvement of evaporite-related fluids in formation of the deposit; boron isotope data also allow for this conclusion. Results of our research indicate that the metal association in the Juomasuo Au–Co deposit was formed by spatially coincident and multiple hydrothermal processes.

2021 ◽  
Vol 116 (8) ◽  
pp. 1825-1848
Author(s):  
Wei Li ◽  
Nigel J. Cook ◽  
Gui-Qing Xie ◽  
Jing-Wen Mao ◽  
Cristiana L. Ciobanu ◽  
...  

Abstract Yuhengtang is a representative slate-hosted Au deposit in the Jiangnan orogenic belt, South China, with a reserve of ~55 t Au and an average grade of ~3.9 g/t. Gold mineralization is characterized by veinlet and disseminated ores comprising native gold, auriferous pyrite, and arsenopyrite. Paragenesis of the Yuhengtang deposit can be divided into three stages. Pre-ore stage 1 is composed of bedding-parallel layers of pyrite in slate of the Neoproterozoic Banxi Group. Main ore stage 2 represents the Au mineralization stage, and two distinct types of mineralization can be distinguished: visible Au-arsenopyrite-pyrite in quartz veinlets and auriferous arsenopyrite-pyrite disseminated within altered slate. Post-ore stage 3 consists of quartz-pyrite-calcite-ankerite veins. In this study, we integrate electron microprobe, laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) and high-resolution ion microprobe (SHRIMP) analyses to document textural, isotopic, and compositional variation among texturally complex pyrite and arsenopyrite assemblages in veinlet and disseminated ores. Additionally, LA-ICP-MS sulfur isotope mapping of pyrite highlights the covariation behavior between trace elements and sulfur isotopes at the grain scale, thus allowing the factors controlling sulfur isotope fractionation in hydrothermal Au deposits to be constrained. Pyrite, of sedimentary origin (stage 1), hosts negligible Au (<1.6 ppm) but is enriched in δ34S (15.6–25.8‰). Pyrite and arsenopyrite from stage 2 veinlet mineralization both display porous and dissolution-reprecipitation textures, have low Au concentrations (<4 and <78 ppm, respectively), and show a large variation in δ34S (–2.7 to 14.7‰ and –10.3 to 12.1‰, respectively). Pyrite and arsenopyrite from disseminated mineralization are, in contrast, characterized by oscillatory zoning textures and homogeneous appearance in backscattered electron (BSE) images, respectively, and are obvious by their relatively high contents of invisible Au (up to 90 and 263 ppm, respectively) and restricted range of δ34S values (0–5.3‰). These data suggest that magmatic-hydrothermal fluids contribute most of the Au and S budget in the Yuhengtang Au deposit. The major differences between veinlet and disseminated mineralization in terms of texture, trace element concentrations, and δ34S signatures of pyrite and arsenopyrite reflect contrasting mechanisms of Au precipitation and an evolution of physicochemical parameters of the ore-forming processes, particularly fO2 and the intensity of fluid-rock interaction. Pyrite from stage 3 appears homogeneous in BSE images yet displays a wide variation in δ34S values (1.2–31.4‰), further highlighting the controlling role played by physicochemical condition (i.e., pressure) on the δ34S signature of sulfides. Results of the coupled LA-ICP-MS sulfur and trace element mapping reveal that some zoned pyrite grains from stage 2 formed via overgrowth of Au-rich, light δ34S (2.4‰) hydrothermal rims onto Au-poor, heavy δ34S (18.1–18.5‰) sedimentary cores. All results support that multiple depositional mechanisms within a dynamic mineral system were responsible for Au concentration and define the specific textural, compositional, and sulfur isotope signatures of sulfides in coexisting vein/veinlet and disseminated mineralization. The new data highlight the ore-forming processes-based interpretation for ore genesis and underpin the importance of performing complementary in situ mineralogical analyses to elucidate the source and evolution of ore-forming fluids and enable correct interpretation of the architecture of the hydrothermal Au system.


2021 ◽  
Vol 59 (5) ◽  
pp. 1233-1259
Author(s):  
Claire Leighton ◽  
Daniel Layton-Matthews ◽  
Jan M. Peter ◽  
Michael G. Gadd ◽  
Alexandre Voinot ◽  
...  

ABSTRACT The MacMillan Pass district in Yukon, Canada, hosts the Tom and Jason clastic sediment-hosted Zn-Pb-Ag-(Ba) deposits. Pyrite-bearing drill core samples were collected from seven drill holes that intersected sulfide mineralization and time-stratigraphically equivalent rocks at varied spatial distances extending up to 3 km away from the deposits to assess the relative timing of pyrite mineralization and the chemistry of pyrite paragenesis. There are four pyrite morphologies: framboids and polyframboids (Py1), subhedral to euhedral inclusion-free crystals (Py2a), silicate inclusion-bearing nodules with serrated edges (Py2b), and euhedral idiomorphic overgrowths on preexisting pyrite morphologies (Py3). These morphological varieties correspond in time from syngenetic to earliest diagenetic growth (Py1), early to late diagenetic growth (Py2a, Py2b), and metamorphic crystallization and/or recrystallization of previous textural varieties (Py3). A representative subset of pyrite grains was analyzed for trace element contents and distributions by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Analyses by LA-ICP-MS reveal that each textural variety of pyrite has a distinct trace element composition that also varies depending on stratigraphic unit. A suite of clastic sediment-hosted sulfide mineralization-related elements was incorporated into Py2 within sulfide mineralized units at greater abundances than that in unmineralized units (e.g., Zn, As, Pb, Tl, Bi). Lead abundances and Pb/Se and As/Mo values in pyrite are the most robust vectoring tools documented. The timing for clastic sediment-hosted Zn-Pb mineralization was syn and/or post late diagenesis (Py2b). A Ba-enriched horizon was identified in rocks and this is interpreted to be the distal time-stratigraphic equivalent unit to Zn-Pb mineralization. The Ba-enriched horizon contains Py2 with anomalous metal (Tl, Co, Mn, Cd, Zn, Sb) contents and abundant macroscopic baryte, and it is interpreted to represent the distal expression of sulfide mineralization-forming hydrothermal activity. Four genetic models for mineralization are reviewed; however, the only model that is consistent with our whole rock and pyrite geochemistry involves venting of buoyant hydrothermal fluid, mixing with ambient seawater, and remaining or sinking into unconsolidated sediments, with lateral migration up to 2–3 km from the vent source.


2021 ◽  
Vol 82 (3) ◽  
pp. 61-63
Author(s):  
Lyubomirka Macheva ◽  
Philip Machev ◽  
Rossitsa Vassilevа ◽  
Yulia Plotkina

North-northeast of the village of Ilinden (Southern Pirin Mnt.) three eclogite boudins were separated on the geological map in scale 1:50 000 (Sarov, 2010). The rocks belong to the Slasten lithotectonic unit. The mineral assemblage and mineral chemistry do not allow these rocks to be classified as eclogites. They can be considered as eclogite-like ones, formed by postmagmatic-metasomatic alteration of the host rocks. Based on LA-ICP-MS sphene U-Pb dating, eclogite-like rocks yield a Late Jurassic age (160±19 Ma).


2019 ◽  
Vol 104 (9) ◽  
pp. 1256-1272 ◽  
Author(s):  
Indrani Mukherjee ◽  
Ross R. Large ◽  
Stuart Bull ◽  
Daniel G. Gregory ◽  
Aleksandr S. Stepanov ◽  
...  

Abstract Redox-sensitive trace elements and sulfur isotope compositions obtained via in situ analyses of sedimentary pyrites from marine black shales are used to track atmosphere-ocean redox conditions between ∼1730 and ∼1360 Ma in the McArthur Basin, northern Australia. Three black shale formations within the basin (Wollogorang Formation 1730 ± 3 Ma, Barney Creek Formation 1640 ± 3 Ma, and Upper Velkerri Formation 1361 ± 21 Ma) display systematic stratigraphic variations in pyrite trace-element compositions obtained using LA-ICP-MS. The concentrations of several trace elements and their ratios, such as Se, Zn, Se/Co, Ni/Co, Zn/Co, Mo/Co, Se/Bi, Zn/Bi, Ni/Bi, increase from the stratigraphically lower Wollogorang Formation to the Upper Velkerri Formation. Cobalt, Bi, Mo, Cu, and Tl show a consistent decrease in abundance while Ni, As, and Pb show no obvious trends. We interpret these trace element trends as a response to the gradual increase of oxygen in the atmosphere-ocean system from ∼1730 to 1360 Ma. Elements more mobile during erosion under rising atmospheric oxygen show an increase up stratigraphy (e.g., Zn, Se), whereas elements that are less mobile show a decrease (e.g., Co, Bi). We also propose the increase of elemental ratios (Se/Co, Ni/Co, Zn/Co, Mo/Co, Ni/Bi, and Zn/Bi) up stratigraphy are strong indicators of atmospheric oxygenation. Sulfur isotopic compositions of marine pyrite (δ34Spyrite) from these formations, obtained using SHRIMP-SI, are highly variable, with the Wollogorang Formation exhibiting less variation (δ34S = –29.4 to +9.5‰; mean –5.03‰) in comparison to the Barney Creek (δ34S = –13.8 to +41.8‰; mean +19.88‰) and Velkerri Formations (δ34S = –14.2 to +52.8‰; mean +26.9‰). We propose that the shift in mean δ34S to heavier values up-section corresponds to increasing deep water oxygenation from ∼1730 to 1360 Ma. Incursion of oxygenated waters possibly caused a decrease in the areal extent of anoxic areas, at the same time, creating a possibly efficient reducing system. A stronger reducing system caused the δ34S of the sedimentary pyrites to become progressively heavier. Interestingly, heavy δ34S in pyrites overlaps with the increase in the concentration of certain trace elements (and their ratios) in sedimentary pyrites (Se, Zn, Se/Co, Ni/Co, Zn/Co, Mo/Co, Ni/Bi, and Zn/Bi). This study concludes that there was a gradual increase of atmospheric oxygen accompanied by ocean oxygenation through the first ∼400 million years of the Boring Billion (1800–1400 Ma) in the McArthur Basin.


2005 ◽  
Vol 42 (4) ◽  
pp. 599-633 ◽  
Author(s):  
D Barrie Clarke ◽  
Andrew S Henry ◽  
Mike A Hamilton

The Rottenstone Domain of the Trans-Hudson orogen is a 25-km-wide granitic–migmatitic belt lying between the La Ronge volcanic–plutonic island arc (1890–1830 Ma) to the southeast and the ensialic Wathaman Batholith (1855 Ma) to the northwest. The Rottenstone Domain consists of three lithotectonic belts parallel to the orogen: (i) southeast — gently folded migmatized quartzo-feldspathic metasedimentary and mafic metavolcanic rocks intruded by small concordant and discordant white tonalite–monzogranite bodies; (ii) central — intensely folded and migmatized metasedimentary rocks and minor metavolcanic rocks intruded by largely discordant, xenolith-rich, pink aplite-pegmatite monzogranite bodies; and (iii) northwest — steeply folded migmatized metasedimentary rocks cut by subvertical white tonalite–monzogranite sheets. Emplacement of granitoid rocks consists predominantly of contiguous, orogen-parallel, steeply dipping, syntectonic and post-tectonic sheets with prominent magmatic schlieren bands, overprinted by parallel solid-state deformation features. The white granitoid rocks have A/CNK (mol Al2O3/(mol CaO + Na2O + K2O)) = 1.14–1.22, K/Rb ≈ 500, ΣREE (sum of rare-earth elements) < 70 ppm, Eu/Eu* > 1, 87Sr/86Sri ≈ 0.7032, and εNdi ≈ –2. The pink monzogranites have A/CNK = 1.11–1.16, K/Rb ≈ 500, ΣREE > 90 ppm, Eu/Eu* < 1, 87Sr/86Sri ≈ 0.7031, and εNdi ≈ –2. The white granitoid rocks show a wider compositional range and more compositional scatter than the pink monzogranites, reflecting some combination of smaller volume melts, less homogenization, and less control by crystal–melt equilibria. All metavolcanic, metasedimentary, and granitic rocks in the Rottenstone Domain have the distinctive geochemical signatures of an arc environment. New sensitive high-resolution ion microprobe (SHRIMP) U–Pb geochronology on the Rottenstone granitoid rocks reveals complex growth histories for monazite and zircon, variably controlled by inheritance, magmatism, and high-grade metamorphism. Monazite ages for the granitoid bodies and migmatites cluster at ~1834 and ~1814 Ma, whereas zircon ages range from ~2480 Ma (rare cores) to ~1900–1830 Ma (cores and mantles), but also ~1818–1814 Ma for low Th/U recrystallized rims, overgrowths, and rare discrete euhedral prisms. These results demonstrate that at least some source material for the granitic magmas included earliest Paleoproterozoic crust (Sask Craton?), or its derived sediments, and that Rottenstone granitic magmatism postdated plutonism in the bounding La Ronge Arc and Wathaman Batholith. We estimate the age of terminal metamorphism in the Davin Lake area to be ~1815 Ma. Petrogenetically, the Rottenstone migmatites and granitoid rocks appear, for the most part, locally derived from their metasedimentary and metavolcanic host rocks, shed from the La Ronge Arc, Sask Craton, and possibly the Hearne Craton. The Rottenstone Domain was the least competent member in the overthrust stack and probably underwent a combination of fluid-present melting and fluid-absent decompression melting, resulting in largely syntectonic granitoid magmatism ~1835–1815 Ma, analogous to granite production in the High Himalayan gneiss belt.


2017 ◽  
Vol 54 (7) ◽  
pp. 693-713 ◽  
Author(s):  
Michael A. MacDonald ◽  
D. Barrie Clarke

Melagranites (colour index > 20, with biotite > garnet > cordierite) constitute ∼0.1% of the area of the 7300 km2 peraluminous South Mountain Batholith (SMB), Nova Scotia. The melagranites occur as small bodies showing sharp to gradational contacts against the Meguma Supergroup country rocks, and coeval mingling contacts against other facies of the batholith. They also occur as elliptical or blocky metre-scale enclaves elsewhere in the SMB. Characteristic petrological features of the melagranites include high modal abundances of sulphide minerals, strongly reacted metasedimentary xenoliths, mafic mineral-rich clots, apparent porphyritic textures with highly variable proportions of alkali feldspar megacrysts, and allotriomorphic-granular textures. Chemically and isotopically, melagranite rocks have wide compositional variations. In most major-element, trace-element, and isotopic variation diagrams, the melagranites lie on mixing lines between the more abundant granodioritic and monzogranitic phases of the SMB and the metasedimentary rocks of the Meguma Supergroup. Textural evidence, supported by published experimental evidence, suggests that the garnet, cordierite, and K-feldspar are peritectic phases resulting from incongruent melting of the pelitic fraction of the Meguma metasedimentary country rocks. The field relations, mineral assemblages, textural features, and chemical compositions of the melagranites all point to the melagranites as highly concentrated contamination zones in the SMB, representing small portions of the batholith that have failed either to complete the assimilation process or to disperse their contaminants widely in the batholith. As such, these rarely preserved melagranites provide petrogenetic information disproportionate in importance to their abundance in the batholith, especially about the significant role of contamination and assimilation in determining the physical and chemical composition of the SMB. Without preservation of melagranites in the SMB, and by extension all granite bodies, the petrogenetic importance of contamination is difficult to assess, even with trace-element and isotopic data. The present study shows that high quality field observations are as important in deciphering petrogenesis as chemical data.


Minerals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 743 ◽  
Author(s):  
Irina Melekestseva ◽  
Valery Maslennikov ◽  
Gennady Tret’yakov ◽  
Svetlana Maslennikova ◽  
Leonid Danyushevsky ◽  
...  

The trace element (TS) composition of isocubanite, chalcopyrite, pyrite, bornite, and covellite from oxidized Cu-rich massive sulfides of the Ashadze-2 hydrothermal field (12°58′ N, Mid-Atlantic Ridge) is studied using LA-ICP-MS. The understanding of TE behavior, which depends on the formation conditions and the mode of TE occurrence, in sulfides is important, since they are potential sources for byproduct TEs. Isocubanite has the highest Co contents). Chalcopyrite concentrates most Au. Bornite has the highest amounts of Se, Sn, and Te. Crystalline pyrite is a main carrier of Mn. Covellite after isocubanite is a host to the highest Sr, Ag, and Bi contents. Covellite after pyrite accumulates V, Ga and In. The isocubanite+chalcopyrite aggregates in altered gabrro contain the highest amounts of Ni, Zn, As, Mo, Cd, Sb (166 ppm), Tl, and Pb. The trace element geochemistry of sulfides is mainly controlled by local formation conditions. Submarine oxidation results in the formation of covellite and its enrichment in most trace elements relative to primary sulfides. This is a result of incorporation of seawater-derived elements and seawater-affected dissolution of accessory minerals (native gold, galena and clausthalite).


2017 ◽  
Vol 47 (2) ◽  
pp. 301-325 ◽  
Author(s):  
Raissa Beloti de Mesquita ◽  
Hanna Jordt-Evangelista ◽  
Gláucia Nascimento Queiroga ◽  
Edgar Batista de Medeiros Júnior ◽  
Ivo Antônio Dussin

ABSTRACT: This paper concerns the study of petrography, mineral chemistry and geochronology of skarns generated at the contact of marbles of the Paraíba do Sul Complex with felsic and metamafic dykes in the southern Espírito Santo State. The marbles were metamorphosed under P-T granulite facies conditions during the syn-collisional stage of the Neoproterozoic Araçuaí orogen. Metamafic bodies are composed of amphibolite and hornblende granofels, while felsic dykes consist of alkali-feldspar granite, monzogranite or syenogranite. From marble towards the dyke, skarns related to the metamafic bodies are composed of carbonate + olivine and diopside + hornblende zones. Skarn associated to the granitic dykes are composed of three different zones: carbonate + tremolite, diopside, scapolite + diopside. Variations in mineral chemical compositions along the metasomatic zones suggest introduction of Mg and Ca from the marbles, Fe from the metamafic dykes and Na from the granitoids. The presence of spinel in the metamafic dykes and their skarns indicates that both were metamorphosed under granulite facies conditions during the 580-560 Ma syn-collisional stage. U-Pb zircon geochronology (LA-ICP-MS) of an alkali-feldspar granite dyke resulted in a crystallization age of ca.540 Ma, which suggests that its skarns are therefore younger than skarns associated with the syn-collisional metamafic dykes.


2020 ◽  
Vol 115 (2) ◽  
pp. 325-354
Author(s):  
Camilo Uribe-Mogollon ◽  
Kierran Maher

Abstract The Grasshopper prospect, located 23 km west-southwest from Dillon, Montana, presents exposed zones of phyllic alteration assemblages comprising the early and late phyllic styles. The mineral chemistry of white micas from both phyllic alteration zones was evaluated by short-wave infrared spectroscopy, electron microprobe analysis, and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). The early phyllic expression consists of white to green micas characterized by longer Al-OH absorption wavelengths (2,204–2,210 nm), whereas the late phyllic phase contains white micas with shorter Al-OH absorption wavelengths (2,197–2,204 nm). Correlation with electron microprobe data found that the Tschermak substitution in the white micas is mainly controlled by Mg concentrations. Based on LA-ICP-MS data, higher Mn and Sr concentrations characterize white micas from the early phyllic alteration, whereas higher concentrations of B, Ba, Cr, Cs, Cu, Li, Rb, Sc, Sn, Ti, Tl, V, and W are present in white micas from the late phyllic style. Systematic zoning patterns of trace element concentrations in white micas from the early and late phyllic alteration styles were confirmed at Grasshopper. In general, increasing trends toward the center of the system were observed in V, Cu, Sc, Sn, W, and Zn, whereas increasing trends outward from the hydrothermal center were reported in Li and Cs. Comparison of the trace element concentrations of white micas from the early phyllic style from the barren system of Grasshopper and the mineralized system of Copper Cliff indicates significant differences in Zn, Cr, B, Tl, Sn, and Cs. Therefore, we propose a preliminary discrimination (Zn + Cr + B vs. Tl + Sn + Cs) plot that can be used to differentiate white micas from the early phyllic alteration among mineralized and weakly to unmineralized systems.


Sign in / Sign up

Export Citation Format

Share Document