scholarly journals Soil texture and altitude, respectively, largely determine the floristic gradient of the most diverse fog oasis in the Peruvian desert

2013 ◽  
Vol 29 (5) ◽  
pp. 427-438 ◽  
Author(s):  
Jannes Muenchow ◽  
Simon Hauenstein ◽  
Achim Bräuning ◽  
Rupert Bäumler ◽  
Eric Frank Rodríguez ◽  
...  

Abstract:Studying species turnover along gradients is a key topic in tropical ecology. Crucial drivers, among others, are fog deposition and soil properties. In northern Peru, a fog-dependent vegetation formation develops on mountains along the hyper-arid coast. Despite their uniqueness, these fog oases are largely uninvestigated. This study addresses the influence of environmental factors on the vegetation of these unique fog oases. Accordingly, vegetation and soil properties were recorded on 66 4 × 4-m plots along an altitudinal gradient ranging from 200 to 950 m asl. Ordination and modelling techniques were used to study altitudinal vegetation belts and floristic composition. Four vegetation belts were identified: a low-elevation Tillandsia belt, a herbaceous belt, a bromeliad belt showing highest species richness and an uppermost succulent belt. Different altitudinal levels might reflect water availability, which is highest below the temperature inversion at around 700 m asl. Altitude alone explained 96% of the floristic composition. Soil texture and salinity accounted for 88%. This is in contrast with more humid tropical ecosystems where soil nutrients appear to be more important. Concluding, this study advances the understanding of tropical gradients in fog-dependent and ENSO-affected ecosystems.

Agriculture ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 171
Author(s):  
Gaurav Mishra ◽  
Rosa Francaviglia

Northeast (NE) India is a typical tropical ecosystem with a luxuriant forest vegetation cover, but nowadays forests are under stress due to exploitation and land use changes, which are known to affect soil health and productivity. However, due to a scarcity of data, the influence of land uses and altitude on soil properties of this peculiar ecosystem is poorly quantified. This study presents the changes in soil properties in two districts of Nagaland (Mon and Zunheboto) in relation to land uses (forest, plantation, jhum and fallow jhum), altitude (<500 m, 500–1000 m, >1000 m) and soil texture (coarse, medium, fine). For this, a random soil sampling was performed in both the districts. Results indicated that soil organic carbon (SOC) stocks and available potassium (K) were significantly influenced by land uses in the Mon district, while in Zunheboto a significant difference was observed in available phosphorus (P) content. SOC stocks showed an increasing trend with elevation in both districts. The influence of altitude on P was significant and the maximum concentration was at lower elevations (<500 m). In Mon, soil texture significantly affected SOC stocks and the available N and P content. The variability in soil properties due to land uses, altitudinal gradients and textural classes can be better managed with the help of management options, which are still needed for this ecosystem.


2017 ◽  
Vol 63 (2) ◽  
pp. 8-16 ◽  
Author(s):  
Corrado Battisti ◽  
Marco Giardini ◽  
Francesca Marini ◽  
Lorena Di Rocco ◽  
Giuseppe Dodaro ◽  
...  

We reported a study on breeding birds occurring inside an 80 m-deep karst sinkhole, with the characterization of the assemblages recorded along its semi-vertical slopes from the upper edge until the bottom. The internal sides of the sinkhole have been vertically subdivided in four belts about 20 m high. The highest belt (at the upper edge of the cenote) showed the highest values in mean number of bird detections, mean and normalized species richness, and Shannon diversity index. The averaged values of number of detections and species richness significantly differ among belts. Species turnover (Cody’s β-diversity) was maximum between the highest belts. Whittaker plots showed a marked difference among assemblages shaping from broken-stick model to geometric series, and explicited a spatial progressive stress with a disruption in evenness towards the deepest belts. Bird assemblages evidenced a nested subset structure with deeper belts containing successive subsets of the species occurring in the upper belts. We hypothesize that, at least during the daytime in breeding season, the observed non-random distribution of species along the vertical stratification is likely due to (i) the progressive simplification both of the floristic composition and vegetation structure, and (ii) the paucity of sunlight as resources from the upper edge to the inner side of the cenote.


AGRICA ◽  
2019 ◽  
Vol 11 (2) ◽  
Author(s):  
Sebastianus Kuswara ◽  
Charly Mutiara

Evaluation soil fertility in dusun kekawii III randotonda Village, Ende District, Ende Regency. This study aims to determine the physical properties of the soil and the level of suitability of the land in Kekawii III hamlet, Randotonda village, Ende District, Ende Regency. Research is exploratory research, by evaluating physical properties, the evaluation results are described and compared with the standard physical properties of existing soil. The results of the study show that the soil properties in Kekawii III Hamlet are the soil texture of the sandy soil, clay. In structures, the types that exist are rounded lumps, lumpy angles, granular structures. On the color of the land dominated by Dark brown, Very dark gray, Very dark grayish brown. The consistency of land, it can be seen that these lands have a consistency that is sticky, plastic, loose, soft. The pH of the soil ranges from 4.2-6.4 and the slope ranges from 5% - 12%


Bothalia ◽  
1978 ◽  
Vol 12 (3) ◽  
pp. 499-511 ◽  
Author(s):  
O. J. H. Bosch

Sample stands of vegetation occurring on the Sterkspruit and Estcourt soil forms in the south-eastern Orange Free State were compared by means of an ordination technicque (principal components analysis). The habitats of the various grass communities were compared to determine whether communities corresponding to one other develop under similar habitat conditions. The floristic composition of the vegetation on soils of the Sterkspruit and Estcourt forms are often similar, although the soil form and other habitat conditions differ markedly. The results of these investigations have shown that this could be due to compensation effects, which are the result of reciprocal interactions mainly between the moisture-determining factors such as soil texture, topography, effective soil depth and degree of erosion.


2019 ◽  
Vol 11 (6) ◽  
pp. 1559 ◽  
Author(s):  
Xiaojun Zheng ◽  
Jing Fu ◽  
Noelikanto Ramamonjisoa ◽  
Weihong Zhu ◽  
Chunguang He ◽  
...  

Understanding what controls wetland vegetation community composition is vital to conservation and biodiversity management. This study investigates the factors that affect wetland plant communities and distribution in the Tumen River Basin, Northeast China, an internationally important wetland for biodiversity conservation. We recorded floristic composition of herbaceous plants, soil properties, and microclimatic variables in 177, 1 × 1 m2 quadrats at 45 sites, located upstream (26), midstream (12), and downstream (7) of the Basin. We used TWINSPAN to define vegetation communities and canonical correspondence analysis (CCA) to examine the relationships between environmental and biological factors within the wetland plant communities. We recorded 100 plant species from 93 genera and 40 families in the upstream, 100 plant species from 57 genera and 31 families in the midstream, and 85 plant species from 76 genera and 38 families in the downstream. Higher species richness was recorded upstream of the River Basin. The plant communities and distribution were influenced by elevation, soil properties (total potassium, pH, and available phosphorus), and microclimate variables (surface temperature, precipitation, average temperature, sunshine hours, and relative humidity). More than any other factor, according to our results, elevation strongly influenced the structure of wetland plant communities. These findings support prevailing models describing the distribution of wetland plants along environmental gradients. The determination of the relationship between soil and plants is a useful way to better understand the ecosystem condition and can help manage the wetland ecosystem.


Author(s):  
Gintaras JARAŠIŪNAS ◽  
Irena KINDERIENĖ

The objective of this study was to evaluate the impact of different land use systems on soil erosion rates, surface evolution processes and physico-chemical properties on a moraine hilly topography in Lithuania. The soil of the experimental site is Bathihypogleyi – Eutric Albeluvisols (abe–gld–w) whose texture is a sandy loam. After a 27-year use of different land conservation systems, three critical slope segments (slightly eroded, active erosion and accumulation) were formed. Soil physical properties of the soil texture and particle sizes distribution were examined. Chemical properties analysed for were soil ph, available phosphorus (P) and potassium (K), soil organic carbon (SOC) and total nitrogen (N). We estimated the variation in thickness of the soil Ap horizon and soil physico-chemical properties prone to a sustained erosion process. During the study period (2010–2012) water erosion occurred under the grain– grass and grass–grain crop rotations, at rates of 1.38 and 0.11 m3 ha–1 yr–1, respectively. Soil exhumed due to erosion from elevated positions accumulated in the slope bottom. As a result, topographic transfiguration of hills and changes in soil properties occurred. However, the accumulation segments of slopes had significantly higher silt/clay ratios and SOC content. In the active erosion segments a lighter soil texture and lower soil ph were recorded. Only long-term grassland completely stopped soil erosion effects; therefore geomorphologic change and degradation of hills was estimated there as minimal.


2019 ◽  
Vol 12 (6) ◽  
pp. 1047-1058 ◽  
Author(s):  
Hélio Menegat ◽  
Divino Vicente Silvério ◽  
Henrique A Mews ◽  
Guarino R Colli ◽  
Ana Clara Abadia ◽  
...  

Abstract Aims Different plant functional groups display diverging responses to the same environmental gradients. Here, we assess the effects of environmental and spatial predictors on species turnover of three functional groups of Brazilian savannas (Cerrado) plants—trees, palms and lianas—across the transition zone between the Cerrado and Amazon biomes in central Brazil. Methods We used edaphic, climatic and plant composition data from nine one-hectare plots to assess the effects of the environment and space on species turnover using a Redundancy Analysis and Generalized Dissimilarity Modeling (GDM), associated with variance partitioning. Important Findings We recorded 167 tree species, 5 palms and 4 liana species. Environmental variation was most important in explaining species turnover, relative to geographic distance, but the best predictors differed between functional groups: geographic distance and silt for lianas; silt for palms; geographic distance, temperature and elevation for trees. Geographic distances alone exerted little influence over species turnover for the three functional groups. The pure environmental variation explained most of the liana and palm turnover, while tree turnover was largely explained by the shared spatial and environmental contribution. The effects of geographic distance upon species turnover leveled off at about 300 km for trees, and 200 km for lianas, whereas they were unimportant for palm species turnover. Our results indicate that environmental factors that determine floristic composition and species turnover differ substantially between plant functional groups in savannas. Therefore, we recommend that studies that aim to investigate the role of environmental conditions in determining plant species turnover should examine plant functional groups separately.


2020 ◽  
Vol 10 (19) ◽  
pp. 10858-10871
Author(s):  
Vanessa J. Dodge ◽  
Valerie T. Eviner ◽  
J. Hall Cushman

SOIL ◽  
2019 ◽  
Vol 5 (2) ◽  
pp. 189-204 ◽  
Author(s):  
Jörg Niederberger ◽  
Martin Kohler ◽  
Jürgen Bauhus

Abstract. Repeated, grid-based forest soil inventories such as the National Forest Soil Inventory of Germany (NFSI) aim, among other things, at detecting changes in soil properties and plant nutrition. In these types of inventories, the only information on soil phosphorus (P) is commonly the total P content. However, total P content in mineral soils of forests is usually not a meaningful variable with respect to predicting the availability of P to trees. Here we tested a modified sequential P extraction according to Hedley (1982) to determine the distribution of different plant-available P fractions in soil samples (at depths of 0–5 and 10–30 cm) from 146 NFSI sites, encompassing a wide variety of soil conditions. In addition, we analyzed relationships between these P fractions and common soil properties such as pH, texture, and soil organic carbon content (SOC). The total P content among our samples ranged from approximately 60 to 2800 mg kg−1. The labile, moderately labile, and stable P fractions contributed to 27 %, 51 %, and 22 % of the total P content, respectively, at a depth of 0–5 cm. At a depth of 10–30 cm, the labile P fractions decreased to 15 %, whereas the stable P fractions increased to 30 %. These changes with depth were accompanied by a decrease in the organic P fractions. High P contents were related to high pH values. While the labile Hedley P pool increased with decreasing pH in absolute and relative terms, the stable Hedley P pool decreased in absolute and relative terms. Increasing SOC in soils led to significant increases in all Hedley P pools and in total P. In sandy soils, the P content across all fractions was lower than in other soil texture types. Multiple linear regression models indicated that Hedley P pools and P fractions were moderately well related to soil properties (with r2 values that were mostly above 0.5), and that the sand content of soils had the strongest influence. Foliar P contents in Pinus sylvestris were reasonably well explained by the labile and moderately labile P pool (r2 = 0.67) but not so for Picea abies and Fagus sylvatica. Foliar P contents in all three species could not be related to specific Hedley P pools. Our study indicates that soil properties such as pH, SOC content, and soil texture may be used to predict certain soil Hedley P pools with different plant availability on the basis of large soil inventories. However, the foliar P contents of tree species cannot be sufficiently well predicted by the soil variables considered here.


2016 ◽  
Vol 96 (4) ◽  
pp. 386-399 ◽  
Author(s):  
Athyna N. Cambouris ◽  
Noura Ziadi ◽  
Isabelle Perron ◽  
Khaled D. Alotaibi ◽  
Mervin St. Luce ◽  
...  

Information on how soil texture and related soil properties affect corn (Zea mays L.) nitrogen (N) response is needed to improve N management in corn production. We conducted a study at 12-site yr in Quebec to assess the effect of N rate (0–250 kg N ha−1) and soil surface textural groups [clay, loam, sandy belonging to the gleysolic soil order (Sg), and sandy belonging to the podzolic soil order (Sp)] on corn grain yield, stover yield, total N uptake (TNU), nitrogen uptake efficiency (NUE), thousand kernel weight (TKW), test weight, and chlorophyll meter readings (CMR). Corn was more responsive to N rate in the clay soil textural group for most of the parameters due to lower soil N supply, and least responsive in the Sp group, except for test weight and CMR, due to possibly greater leaching in this group. The CMR at flowering accounted for 87%, 87%, 82%, and 25% of the variation in grain yield, TNU, TKW, and test weight, respectively. This study suggests that soil surface texture has a major influence on corn N response, but other soil properties such as drainage may also be important.


Sign in / Sign up

Export Citation Format

Share Document