scholarly journals Land Uses, Altitude and Texture Effects on Soil Parameters. A Comparative Study in Two Districts of Nagaland, Northeast India

Agriculture ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 171
Author(s):  
Gaurav Mishra ◽  
Rosa Francaviglia

Northeast (NE) India is a typical tropical ecosystem with a luxuriant forest vegetation cover, but nowadays forests are under stress due to exploitation and land use changes, which are known to affect soil health and productivity. However, due to a scarcity of data, the influence of land uses and altitude on soil properties of this peculiar ecosystem is poorly quantified. This study presents the changes in soil properties in two districts of Nagaland (Mon and Zunheboto) in relation to land uses (forest, plantation, jhum and fallow jhum), altitude (<500 m, 500–1000 m, >1000 m) and soil texture (coarse, medium, fine). For this, a random soil sampling was performed in both the districts. Results indicated that soil organic carbon (SOC) stocks and available potassium (K) were significantly influenced by land uses in the Mon district, while in Zunheboto a significant difference was observed in available phosphorus (P) content. SOC stocks showed an increasing trend with elevation in both districts. The influence of altitude on P was significant and the maximum concentration was at lower elevations (<500 m). In Mon, soil texture significantly affected SOC stocks and the available N and P content. The variability in soil properties due to land uses, altitudinal gradients and textural classes can be better managed with the help of management options, which are still needed for this ecosystem.

Author(s):  
Gintaras JARAŠIŪNAS ◽  
Irena KINDERIENĖ

The objective of this study was to evaluate the impact of different land use systems on soil erosion rates, surface evolution processes and physico-chemical properties on a moraine hilly topography in Lithuania. The soil of the experimental site is Bathihypogleyi – Eutric Albeluvisols (abe–gld–w) whose texture is a sandy loam. After a 27-year use of different land conservation systems, three critical slope segments (slightly eroded, active erosion and accumulation) were formed. Soil physical properties of the soil texture and particle sizes distribution were examined. Chemical properties analysed for were soil ph, available phosphorus (P) and potassium (K), soil organic carbon (SOC) and total nitrogen (N). We estimated the variation in thickness of the soil Ap horizon and soil physico-chemical properties prone to a sustained erosion process. During the study period (2010–2012) water erosion occurred under the grain– grass and grass–grain crop rotations, at rates of 1.38 and 0.11 m3 ha–1 yr–1, respectively. Soil exhumed due to erosion from elevated positions accumulated in the slope bottom. As a result, topographic transfiguration of hills and changes in soil properties occurred. However, the accumulation segments of slopes had significantly higher silt/clay ratios and SOC content. In the active erosion segments a lighter soil texture and lower soil ph were recorded. Only long-term grassland completely stopped soil erosion effects; therefore geomorphologic change and degradation of hills was estimated there as minimal.


SOIL ◽  
2019 ◽  
Vol 5 (2) ◽  
pp. 189-204 ◽  
Author(s):  
Jörg Niederberger ◽  
Martin Kohler ◽  
Jürgen Bauhus

Abstract. Repeated, grid-based forest soil inventories such as the National Forest Soil Inventory of Germany (NFSI) aim, among other things, at detecting changes in soil properties and plant nutrition. In these types of inventories, the only information on soil phosphorus (P) is commonly the total P content. However, total P content in mineral soils of forests is usually not a meaningful variable with respect to predicting the availability of P to trees. Here we tested a modified sequential P extraction according to Hedley (1982) to determine the distribution of different plant-available P fractions in soil samples (at depths of 0–5 and 10–30 cm) from 146 NFSI sites, encompassing a wide variety of soil conditions. In addition, we analyzed relationships between these P fractions and common soil properties such as pH, texture, and soil organic carbon content (SOC). The total P content among our samples ranged from approximately 60 to 2800 mg kg−1. The labile, moderately labile, and stable P fractions contributed to 27 %, 51 %, and 22 % of the total P content, respectively, at a depth of 0–5 cm. At a depth of 10–30 cm, the labile P fractions decreased to 15 %, whereas the stable P fractions increased to 30 %. These changes with depth were accompanied by a decrease in the organic P fractions. High P contents were related to high pH values. While the labile Hedley P pool increased with decreasing pH in absolute and relative terms, the stable Hedley P pool decreased in absolute and relative terms. Increasing SOC in soils led to significant increases in all Hedley P pools and in total P. In sandy soils, the P content across all fractions was lower than in other soil texture types. Multiple linear regression models indicated that Hedley P pools and P fractions were moderately well related to soil properties (with r2 values that were mostly above 0.5), and that the sand content of soils had the strongest influence. Foliar P contents in Pinus sylvestris were reasonably well explained by the labile and moderately labile P pool (r2 = 0.67) but not so for Picea abies and Fagus sylvatica. Foliar P contents in all three species could not be related to specific Hedley P pools. Our study indicates that soil properties such as pH, SOC content, and soil texture may be used to predict certain soil Hedley P pools with different plant availability on the basis of large soil inventories. However, the foliar P contents of tree species cannot be sufficiently well predicted by the soil variables considered here.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0247177
Author(s):  
Ram Ratan Verma ◽  
Tapendra Kumar Srivastava ◽  
Pushpa Singh ◽  
B. L. Manjunath ◽  
Anil Kumar

Soils of Indian Konkan region, part of ecologically sensitive Western Ghats have been subjected to anthropogenic activities of late. This has endangered the ecological security through conspicuous losses in topsoil quality. The rationale of the present study was to map the soil properties and create management zones for ensuring food and nutritional security. The study was conducted in South Goa district of the state of Goa located in Konkan region. A total of 258 geo-referenced soil samples were collected and analyzed for pH, EC, SOC, available N, P, K and DTPA extractable micronutrients viz., Zn, Cu, Fe and Mn. Soil pH was found to be in acidic range. A wide variability existed in SOC content ranging from 0.12–5.85%. EC was mostly neutral with mean value 0.08±0.37 dSm-1, while available nitrogen (AN), available phosphorus (AP) and available potassium (AK) varied in range from 56.4–621.6 kg ha-1, 0.5–49.7 kg ha-1 and 31.5–786.2 kg ha-1 with mean values 211.2±76.9, 8.4±8.2 and 202.3±137.6 kg ha-1, respectively. A wide range was exhibited by cationic DTPA extractable Zn, Cu, Fe and Mn with mean values, 0.22±0.30, 0.44±0.60, 7.78±5.98 and 7.86±5.86 mg kg-1, respectively. Soil pH exhibited significant positive correlation with EC, AP AK and Zn and negative correlation with Fe and Cu. SOC exhibited significantly correlated with AN, AP, AK, Zn and Fe. Geo-statistical analysis revealed J-Bessel as best fit semivariogram model for pH, AP and AK; Rational Quadratic for EC, SOC, Zn and Mn; Hole effect for AN; Stable for Cu and K-Bessel for Fe for their spatial mapping. Four principal components showed eigenvalues more than one and cumulative variability of 59.38%. Three distinct soil management zones showing significant variation in soil properties were identified and delineated for wider scale management of soils. Precision nutrient management based on spatial variation and their mapping would enable refined agricultural and environmental management practices in the region.


2020 ◽  
pp. 290-304
Author(s):  
Amrin Naimoddin Mirza ◽  
Satish S Patil

The aim of study was to investigate the seasonal changes of physicochemical parameters in the soil of selected 15 spots of the Gautala reserve forest. The soil is consist of the most significant natural factors, which is created by weathering of the rocks existing in the environment. The present survey was made to study consists the physicochemical parameters in the soil of the Gautala Reserve Forest during the year 2017-18 at three seasonal intervals i.e. rainy, winter and summer seasons. The soil parameters examined were soil pH, soil texture, moisture content, bulk density, electrical conductivity (EC),organic carbon (OC), available Nitrogen (N), available Phosphorus (P), and available Potassium (K). The Gautala forest soil physical property was analyzed as sandy loam and silty loam. The pH and Organic carbon levels were low during summer and high in monsoon. The total amount of available N, P, K, electrical conductivity, water holding capacity and moisture content were maximum in monsoon and minimum in summer season. The physicochemical properties are dependent variables that play an important role in order to understand plant diversity.


Author(s):  
TN Shila ◽  
MS Islam ◽  
MMM Hoque ◽  
MH Kabir ◽  
MR Jamil ◽  
...  

The study was conducted to investigate the soil properties and pesticide intensity in rice, banana and brinjal growing agricultural land of Delduar and Sakhipur upazila of Tangail district during July 2019 to June 2020. Forty five soil samples were collected from different crop land at the study area and analyzed in the Soil Resource Development Institute to determine the soil properties as pH, total organic matter (OM), total nitrogen (N), available phosphorus (P), available sulfur (S), available zinc (Zn), exchangeable potassium (K), exchangeable magnesium (Mg) and exchangeable calcium (Ca). However, pesticide used intensity was also evaluated through questionnaire survey with farmers and stakeholders in the study area. Results showed that pH, OM, available N, exchangeable Ca and exchangeable Mg content were significantly higher in rice growing land than banana and brinjal. On the other hand, available P, exchangeable K and available Zn content were substantially higher in brinjal growing land than rice and banana. The OM showed significant positive correlation with soil pH, available N, available S, exchangeable Mg and exchangeable Ca (r=0.37, 0.99, 0.31, 0.59 and 0.63, respectively), indicated rice growing land built up these soil properties through increasing soil OM. The available P showed significant and positive correlation with K and Zn (r=0.55 and 0.74, respectively), but negative correlation with exchangeable Mg and exchangeable Ca (r=-0.53 and -0.32, respectively). The exchangeable K showed significant and positive correlation with available Zn (r=0.45) but negative correlation with exchangeable Mg (r=-0.37). The Mg showed significant negative correlation with available Zn (r=-0.45) but positive correlation with exchangeable Ca (r=0.87). Results also revealed that pesticide used intensity was higher in brinjal followed by banana and minimum in rice crop. Study suggests that farmers require up-to-date information on soil nutrient status so that they may use the proper utilization of fertilizers and avoid using excessive amounts of fertilizers and pesticides in their crop land. Int. J. Agril. Res. Innov. Tech. 11(2): 85-94, Dec 2021


2021 ◽  
Vol 13 (22) ◽  
pp. 12572
Author(s):  
Shengdong Cheng ◽  
Ganggang Ke ◽  
Zhanbin Li ◽  
Yuting Cheng ◽  
Heng Wu

Soil phosphorus is a major determinant and indicator of soil fertility and quality, and is also a source of nonpoint-source pollution. In order to control soil and water loss in the Loess Plateau, a series of soil and water conservation measures have been taken, resulting in changes in land use and differences in spatial distribution. It is necessary to study soil available phosphorus (SAP) to evaluate land productivity and environmental quality. In this study, the spatial distribution of SAP in different land uses was investigated in a small catchment area of Loess Plateau, and the field-influencing factors were determined on five layers with soil depth of 20 cm. The results show the minimum and maximum SAP content occurred at 20–40 cm and 80–100 cm soil depth and reach a value of 27.26 mg/kg and 29.37 mg/kg at catchment scale, respectively. There is significant difference among the SAP of the five soil layers (p < 0.01). The SAP of different land uses is, in order: forestland < slope farmland < dam farmland < terrace < grassland. Different land uses’ topographies make a difference to the spatial distribution of SAP. Slope and soil texture are the domain factors influencing the SAP concentration at the catchment.


2020 ◽  
Vol 7 (3) ◽  
pp. 73-84
Author(s):  
OLUWATOYIN OPEYEMI AKINTOLA ◽  
ADEWUNMI IDAYAT BODEDE ◽  
MICHAEL MICHAEL ◽  
AYODEJI GIDEON ADEBAYO ◽  
OLAWALE NUREAN SULAIMAN

Knowledge of soil properties is essential for environmental sustainability for any forest reserve or plantation. The physical and chemical properties of soil under three different land uses was investigated to assess the nutrient and fertility status of the soils. Fifteen soil samples, each collected from different locations within the natural forest, plantation and farm land were analyzed for soil texture, bulk density, porosity, pH, organic carbon, organic matter content, total nitrogen, available phosphorus, Na, K, Ca, Mg, Zn, Cu, Fe and Mn. Texturally, the soils were loamy, loamy sand and sandy loamy in the natural forest, plantation and farmland respectively. There was a significant difference between the three different soils in composition and texture.


2019 ◽  
Vol 13 (10) ◽  
pp. 60 ◽  
Author(s):  
John Kingsley ◽  
Solomon Odafe Lawani ◽  
Ayito Okon Esther ◽  
Kebonye Michael Ndiye ◽  
Ogeh Joseph Sunday ◽  
...  

In precision Agriculture, geostatistical methods as a predictive tool have been extensively utilized. The approach estimates soil properties spatial variability and dependency. This study was carried out in Ovia north east Local Government Area of Edo State of Nigeria in order to map soil properties (Sand, Clay, pH, OC, P, N and CEC) and redict their spatial variability. Twenty-nine (29) soil samples were collected randomly from Typic Kandiudults soil type under three different land use, teak forest plantation, shrub, and arable farm. The soil samples were air-dried and passed through a 2 mm sieve before being analyzed for pH(CaCl2), SOC, Sand, Clay, Phosphorus, Nitrogen, and CEC. Generated data were statistically and geostatistically computed to explain the spatial variability of soil properties. The traditional method of soil analysis and interpretation are tedious, time-consuming with escalating budgets thus geostatical approach. Available phosphorus yielded large variability with CV=57.08% followed by clay content with CV=49.03%. Spherical, Gaussian, Hole Effect model, Stable, Exponential and Circular models were fitted for all the soil parameters. The result revealed that soil pH, Sand content, TN and CEC were moderate spatially autocorrelated with nugget/sill value of 0.32, 0.21, 0.49 and 0.30 respectively. &nbsp;SOC also gave a moderate spatially autocorrelated with nugget/sill value of 0.44. And Clay and Available phosphorus were strong spatially autocorrelated with nugget/sill value of 0.15 and 0.13 respectively. Cross-validation of the output maps using the semivariogram showed that the interpolation models are superior to assuming mean for any unsampled area. The output maps will help soil users within the area to proffer best management technology to improve crop, fiber and water production.&nbsp; &nbsp;


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253156
Author(s):  
Gizachew Ayalew Tiruneh ◽  
Tiringo Yilak Alemayehu ◽  
Derege Tsegaye Meshesha ◽  
Eduardo Saldanha Vogelmann ◽  
José Miguel Reichert ◽  
...  

The understanding of the spatial variation of soil chemical properties is critical in agriculture and the environment. To assess the spatial variability of soil chemical properties in the Fogera plain, Ethiopia, we used Inverse Distance Weighting (IDW), pair-wise comparisons, descriptive analysis, and principal component analysis (PCA). In 2019, soil samples were collected at topsoil (a soil depth of 0–20 cm) from three representative land-uses (cropland, plantation forestland, and grazing lands) using a grid-sampling design. The variance analysis for soil pH, available phosphorus (avP), organic carbon (OC), total nitrogen (TN), electrical conductivity (EC), exchangeable potassium (exchK), exchangeable calcium (exchCa), and cation exchange capacity (CEC) revealed significant differences among the land-uses. The highest mean values of pH (8.9), avP (32.99 ppm), OC (4.82%), TN (0.39%), EC (2.28 dS m−1), and exchK (2.89 cmol (+) kg-1) were determined under grazing land. The lowest pH (6.2), OC (2.3%), TN (0.15%), and EC (0.11 dS m−1) were recorded in cultivated land. The PCA result revealed that the land-use change was responsible for most soil chemical properties, accounting for 93.32%. Soil maps can help identify the nutrient status, update management options, and increase productivity and profit. The expansion of cultivated lands resulted in a significant decrease in soil organic matter. Thus, soil management strategies should be tailored to replenish the soil nutrient content while maintaining agricultural productivity in the Fogera plain.


Soil Research ◽  
2005 ◽  
Vol 43 (1) ◽  
pp. 51 ◽  
Author(s):  
Kamaljit K. Sangha ◽  
Rajesh K. Jalota ◽  
David J. Midmore

In Queensland, land is cleared at high rates to develop pastures for enhanced production and the associated monetary gains. However, pasture production declines over time in cleared pastures until a new equilibrium is reached. The present study focussed on elucidating the reasons for decline in pasture production and finding the key soil properties that are affected due to clearing. Paired sites for cleared and uncleared pastures were selected to represent 3 dominant tree communities of the semi-arid tropics in central Queensland, i.e. Eucalyptus populnea, E. melanophloia, and Acacia harpophylla. The cleared pastures were chosen to represent 3 different durations of time since clearing (5, 11–13, and 33 years) to evaluate the temporal impact of clearing on soil properties. Various soil parameters were studied: macronutrients—available N (NH4+and NO3–), total N, and available P; micronutrients—Cu, Fe, Zn, and Mn; exchangeable cations—Ca, Mg, Na, and K (also macronutrients); pHw; and electrical conductivity. Of these, pHw showed a significant response to time of clearing for all 3 tree communities. Soil pHw increased significantly at cleared sites relative to uncleared (native woodland) pastures, and the increase was highly correlated with concentrations of exchangeable Ca, Mg, and Na. The change in soil pHw and exchangeable cations was more evident at >0.30 m soil depth. The increase in soil pHw in cleared pastures decreased the availability of soil nutrients for plant growth and, hence, pasture productivity. The interactions of different soil properties down the profile as a result of changes caused by clearing are important when interpreting the effects of clearing on soil properties.


Sign in / Sign up

Export Citation Format

Share Document