scholarly journals The Processing of Formulaic Language

2012 ◽  
Vol 32 ◽  
pp. 45-61 ◽  
Author(s):  
Kathy Conklin ◽  
Norbert Schmitt

It is generally accepted that we store representations of individual words in our mental lexicon. There is growing agreement that the lexicon also contains formulaic language (How are you? kick the bucket). In fact, there are compelling reasons to think that the brain represents formulaic sequences in long-term memory, bypassing the need to compose them online through word selection and grammatical sequencing in capacity-limited working memory. The research surveyed in this chapter strongly supports the position that there is an advantage in the way that native speakers process formulaic language compared to nonformulaic language. This advantage extends to the access and use of different types of formulaic language, including idioms, binomials, collocations, and lexical bundles. However, the evidence is mixed for nonnative speakers. While very proficient nonnatives sometimes exhibit processing advantages similar to natives, less proficient learners often have been shown to process formulaic language in a word-by-word manner similar to nonformulaic language. Furthermore, if the formulaic language is idiomatic (where the meaning cannot be understood from the component words), the figurative meanings can be much more difficult to process for nonnatives than nonidiomatic, nonformulaic language.

2010 ◽  
Vol 24 (4) ◽  
pp. 249-252 ◽  
Author(s):  
Márk Molnár ◽  
Roland Boha ◽  
Balázs Czigler ◽  
Zsófia Anna Gaál

This review surveys relevant and recent data of the pertinent literature regarding the acute effect of alcohol on various kinds of memory processes with special emphasis on working memory. The characteristics of different types of long-term memory (LTM) and short-term memory (STM) processes are summarized with an attempt to relate these to various structures in the brain. LTM is typically impaired by chronic alcohol intake but according to some data a single dose of ethanol may have long lasting effects if administered at a critically important age. The most commonly seen deleterious acute effect of alcohol to STM appears following large doses of ethanol in conditions of “binge drinking” causing the “blackout” phenomenon. However, with the application of various techniques and well-structured behavioral paradigms it is possible to detect, albeit occasionally, subtle changes of cognitive processes even as a result of a low dose of alcohol. These data may be important for the consideration of legal consequences of low-dose ethanol intake in conditions such as driving, etc.


2020 ◽  
Author(s):  
John J Shaw ◽  
Zhisen Urgolites ◽  
Padraic Monaghan

Visual long-term memory has a large and detailed storage capacity for individual scenes, objects, and actions. However, memory for combinations of actions and scenes is poorer, suggesting difficulty in binding this information together. Sleep can enhance declarative memory of information, but whether sleep can also boost memory for binding information and whether the effect is general across different types of information is not yet known. Experiments 1 to 3 tested effects of sleep on binding actions and scenes, and Experiments 4 and 5 tested binding of objects and scenes. Participants viewed composites and were tested 12-hours later after a delay consisting of sleep (9pm-9am) or wake (9am-9pm), on an alternative forced choice recognition task. For action-scene composites, memory was relatively poor with no significant effect of sleep. For object-scene composites sleep did improve memory. Sleep can promote binding in memory, depending on the type of information to be combined.


Author(s):  
Kinga K. Borowicz-Reutt ◽  
Monika Banach ◽  
Monika Rudkowska ◽  
Anna Stachniuk

Abstract Background Due to blocking β-receptors, and potassium KCNH2 channels, sotalol may influence seizure phenomena. In the previous study, we have shown that sotalol potentiated the antielectroshock action of phenytoin and valproate in mice. Materials and methods As a continuation of previous experiments, we examined the effect of sotalol on the action of four chosen second-generation antiepileptic drugs (oxcarbazepine, lamotrigine, pregabalin, and topiramate) against the maximal electroshock in mice. Undesired effects were evaluated in the chimney test (motor impairment) and step-through passive-avoidance task (long-term memory deficits). Finally, brain concentrations of antiepileptics were determined by fluorescence polarization immunoassay, while those of sotalol by liquid chromatography–mass spectrometry. Results Sotalol at doses of up to 100 mg/kg did not affect the electroconvulsive threshold. Applied at doses of 80–100 mg/kg, sotalol did not affect the antielectroshock action of oxcarbazepine, lamotrigine, pregabalin, or topiramate. Sotalol alone and in combinations with antiepileptics impaired neither motor performance nor long-term memory. Finally, sotalol significantly decreased the brain concentrations of lamotrigine and increased those of oxcarbazepine and topiramate. Pharmacokinetic interactions, however, did not influence the final antielectroshock effects of above-mentioned drug combinations. On the other hand, the brain concentrations of sotalol were not changed by second-generation antiepileptics used in this study. Conclusion Sotalol did not reduce the antielectroshock action of four second-generation antiepileptic drugs examined in this study. Therefore, this antidepressant drug should not interfere with antiseizure effects of lamotrigine, oxcarbazepine, pregabalin, and topiramate in patients with epilepsy. To draw final conclusions, our preclinical data should still be confirmed in other experimental models and clinical conditions.


2020 ◽  
Author(s):  
Elizabeth Race ◽  
Camille Carlisle ◽  
Ruchi Tejwani ◽  
Mieke Verfaellie

AbstractAccumulating evidence suggests that the hippocampus plays a critical role in the creative and flexible use of language. For example, amnesic patients with hippocampal damage produce less coherent and cohesive verbal discourse when constructing narratives about the past, present, and future. A recent study by Hilverman and colleagues (2017) found that amnesic patients with hippocampal damage also use less imageable words during narrative construction compared to healthy controls. These results suggest that in addition to supporting language use at the discourse level, the hippocampus also influences the quality of language at the single word level. However, the generalizability of these results to different types of language production tasks and the relationship to patients’ broader impairments in episodic memory have yet to be examined. In the current study, we investigated whether amnesic patients with hippocampal damage produce less imageable words compared to healthy controls in two different types of language production tasks. In Experiment 1, participants constructed narratives about events depicted in visually presented pictures (picture narratives). In Experiment 2, participants constructed verbal narratives about remembered events from the past or simulated events in the future (past/future narratives). Across all types of narratives, patients produced words that were rated as having similar levels of imageability compared to controls. Importantly, this was the case both in patients’ picture narratives, which did not require generating details from long-term memory and were matched to controls’ with respect to narrative content, and in patients’ narratives about past/future events, which required generating details from long-term memory and which were reduced in narrative content compared to those of controls. These results reveal that the hippocampus is not necessary for the use of imageable representations at the linguistic level, and that hippocampal contributions to imageable word use are independent of hippocampal contributions to episodic memory.


2008 ◽  
Vol 80 (2) ◽  
pp. 301-309 ◽  
Author(s):  
Pâmela Billig Mello ◽  
Fernando Benetti ◽  
Martín Cammarota ◽  
Iván Izquierdo

Here we study the effect of acute and chronic physical exercise in a treadmill and of daily stress (because forced exercise involves a degree of stress) during 2 or 8 weeks on different types of memory in male Wistar rats. The memory tests employed were: habituation in an open field, object recognition and spatial learning in the Morris water maze. Daily foot-shock stress enhanced habituation learning after 2 but not after 8 weeks; it hindered both short- (STM) and long-term memory (LTM) of the recognition task at 2 weeks but only STM after 8 weeks and had no effect on spatial learning after either 2 or 8 weeks. Acute but not chronic exercise also enhanced habituation in the open field and hindered STM and LTM in the recognition task. Chronic exercise enhanced one important measure of spatial learning (latency to escape) but not others. Our findings indicate that some care must be taken when interpreting effects of forced exercise on brain parameters since at least part of them may be due to the stress inherent to the training procedure.


2020 ◽  
Vol 43 (1) ◽  
pp. 297-314 ◽  
Author(s):  
Josué Haubrich ◽  
Matteo Bernabo ◽  
Andrew G. Baker ◽  
Karim Nader

An enduring problem in neuroscience is determining whether cases of amnesia result from eradication of the memory trace (storage impairment) or if the trace is present but inaccessible (retrieval impairment). The most direct approach to resolving this question is to quantify changes in the brain mechanisms of long-term memory (BM-LTM). This approach argues that if the amnesia is due to a retrieval failure, BM-LTM should remain at levels comparable to trained, unimpaired animals. Conversely, if memories are erased, BM-LTM should be reduced to resemble untrained levels. Here we review the use of BM-LTM in a number of studies that induced amnesia by targeting memory maintenance or reconsolidation. The literature strongly suggests that such amnesia is due to storage rather than retrieval impairments. We also describe the shortcomings of the purely behavioral protocol that purports to show recovery from amnesia as a method of understanding the nature of amnesia.


2013 ◽  
Vol 18 (2) ◽  
pp. 190-200
Author(s):  
Christopher J. Keyes

Although the pedagogy of music technology more closely resembles that of other academic subjects, the teaching of electroacoustic composition involves a significant degree of creativity, and thus relies on different creativity-specific parts of the brain and memory systems (Lehmann 2007). This paper reviews recent neuroscientific research that may assist differentiation between effective pedagogical approaches of these two subjects where knowledge is stored in separate, discrete and sometimes competing long-term memory locations (Cotterill 2001). It argues that, because of these differences, the learning of music technology and electroacoustic composition is best kept separate, at least in the beginning stages. These points are underscored by an example of a demonstrably failed pedagogical model for teaching electroacoustic composition contrasted with a subsequent highly successful model employed in the same university music programme; an experience that may translate well to other learning environments.


Author(s):  
Mathias Scharinger ◽  
William J. Idsardi ◽  
Samantha Poe

AbstractVowel harmony is a phonotactic principle that requires adjacent vowels to agree in certain vowel features. Phonological theory considers this principle to be represented in one's native grammar, but its abstractness and perceptual consequences remain a matter of debate. In this paper, we are interested in the brain's response to violations of harmony in Turkish. For this purpose, we test two acoustically close and two acoustically distant vowel pairs in Turkish, involving different kinds of harmony violations. Our measure is the Mismatch Negativity (MMN), an automatic change detection response of the brain that has previously been applied for the study of native phoneme representations in a variety of languages. The results of our experiment support the view that vowel harmony is a phonological principle with a language-specific long-term memory representation. Asymmetries in MMN responses support a phonological analysis of the pattern of results, but do not provide evidence for a pure acoustic or a pure probabilistic approach. Phonological analyses are given within Optimality Theory (OT) and within an underspecification account.


Author(s):  
Lia Almeida Mapurunga ◽  
Elcyana Bezerra Elcyana Bezerra Carvalho

A neurociência é uma ciência natural que estuda a função e a estrutura, que compõem o cérebro. A educação, embora tenha outra natureza, tem tido muitos benefícios com as contribuições que a neurociência tem para oferecer. Como o cérebro aprende e por que aprende traz para o ensino o objetivo e a função de criar condições (entre estratégias, recursos e adequação do meio), para que ocorra a aprendizagem. E, para que essa ocorra, é necessário que as funções mentais superiores, como a memória, estejam envolvidas. O objetivo deste estudo consiste em fazer uma revisão de literatura para conhecer a função da memória de longo prazo na aprendizagem, analisar os mecanismos neurobiológicos, que ocorrem durante esse processo e algumas estratégias de aprendizagem, que se utilizam da memória como recurso. Para isso, foi realizado no período de agosto a outubro de 2016, um levantamento bibliográfico nas bases de dados Scielo, Capes, Bireme e Google Acadêmico, buscando artigos científicos, que poderiam trazer alguma contribuição na construção dessa pesquisa. Foram selecionados, preferencialmente, os que continham enfoque na relação entre aprendizagem e memória, tanto na perspectiva da neurociência, quanto da psicologia cognitiva, trazendo argumentos que pudessem  comprovar o entendimento das estratégias de aprendizagem, a partir da memória de longo prazo. Também foram selecionados livros que apresentavam apoio às temáticas discorridas para esse trabalho, possibilitando essa relação. Os resultados apontam que estratégias de aprendizagens, que utilizam a memória, produzem efeitos positivos para a retenção de longo prazo.Palavras-chave: Aprendizagem. Neurociências. Estratégias de Aprendizagem.AbstractNeuroscience is a natural science that studies the function and structure that forms the brain. Although education has another nature, it has had many benefits from the contributions that neuroscience has to offer. How the brain learns and why it learns brings to teaching the intent and function to create conditions (among strategies, resources and suitability to the environment) so that learning can happen. And, for it to occur, it is  necessary that higher mental functions, such as memory, beinvolved. The purpose of this study is to do a literature review to get to know the function of long-term memory on the learning process, to analyze the neurobiological mechanisms that happen during that process, and some learning strategies that use memory as a resource. Therefore a bibliographical survey was conducted at the databases Scielo, Capes, Bireme and Academic Google, from August to October 2016, searching for scientific articles that could contribute somehow on the construction of this research. The articles that used the neuroscience perspective or the cognitive psychology to focus on the relationship  between learning and memory were chosen, preferentially those whose arguments could prove the  learning strategies understanding about he long-term memory. Books supporting the themes discussed for this work were also selected, creating, therefore, a relationship. The results show that learning strategies that use memory have positive effects for long-term retention.Keywords: Learning. Neuroscience. Learning Strategies.


Sign in / Sign up

Export Citation Format

Share Document