Intelligent agents: theory and practice

1995 ◽  
Vol 10 (2) ◽  
pp. 115-152 ◽  
Author(s):  
Michael Wooldridge ◽  
Nicholas R. Jennings

AbstractThe concept of anagenthas become important in both artificial intelligence (AT) and mainstream computer science. Our aim in this paper is to point the reader at what we perceive to be the most important theoretical and practical issues associated with the design and construction of intelligent agents. For convenience, we divide these issues into three areas (though as the reader will see, the divisions are at times somewhat arbitrary).Agent theoryis concerned with the question of what an agent is, and the use of mathematical formalisms for representing and reasoning about the properties of agents.Agent architecturescan be thought of as software engineering models of agents; researchers in this area are primarily concerned with the problem of designing software or hardware systems that will satisfy the properties specified by agent theorists. Finally,agent languagesare software systems for programming and experimenting with agents; these languages may embody principles proposed by theorists. The paper isnotintended to serve as a tutorial introduction to all the issues mentioned; we hope instead simply to identify the most important issues, and point to work that elaborates on them. The article includes a short review of current and potential applications of agent technology.

Author(s):  
László Z. Varga

This chapter introduces agent technology as a means of creating dynamic software systems for the changing needs of smart organizations. The notion of agency is introduced, and individual and collective agent architectures are described. Agent interaction methods and agent system design techniques are discussed. Application areas of agent technology are overviewed. The chapter argues that the autonomous and proactive nature of agent systems make them suitable as the new information infrastructure for the networked components of dynamically changing smart organizations.


2011 ◽  
pp. 2086-2093
Author(s):  
László Zsolt Varga

This chapter introduces agent technology as a means of creating dynamic software systems for the changing needs of smart organizations. The notion of agency is introduced, and individual and collective agent architectures are described. Agent interaction methods and agent system design techniques are discussed. Application areas of agent technology are overviewed. The chapter argues that the autonomous and proactive nature of agent systems make them suitable as the new information infrastructure for the networked components of dynamically changing smart organizations.


2011 ◽  
pp. 1380-1400
Author(s):  
László Zsolt Varga

This chapter introduces agent technology as a means of creating dynamic software systems for the changing needs of smart organizations. The notion of agency is introduced, and individual and collective agent architectures are described. Agent interaction methods and agent system design techniques are discussed. Application areas of agent technology are overviewed. The chapter argues that the autonomous and proactive nature of agent systems make them suitable as the new information infrastructure for the networked components of dynamically changing smart organizations.


Author(s):  
Enrique Osuna ◽  
Sergio Castellanos ◽  
Jonathan Hernando Rosales ◽  
Luis-Felipe Rodríguez

Computational models of emotion (CMEs) are software systems designed to emulate specific aspects of the human emotions process. The underlying components of CMEs interact with cognitive components of cognitive agent architectures to produce realistic behaviors in intelligent agents. However, in contemporary CMEs, the interaction between affective and cognitive components occurs in ad-hoc manner, which leads to difficulties when new affective or cognitive components should be added in the CME. This paper presents a framework that facilitates taking into account in CMEs the cognitive information generated by cognitive components implemented in cognitive agent architectures. The framework is designed to allow researchers define how cognitive information biases the internal workings of affective components. This framework is inspired in software interoperability practices to enable communication and interpretation of cognitive information and standardize the cognitive-affective communication process by ensuring semantic communication channels used to modulate affective mechanisms of CMEs


2020 ◽  
Vol 04 ◽  
Author(s):  
A. Guillermo Bracamonte

: Graphene as Organic material showed special attention due to their electronic and conductive properties. Moreover, its highly conjugated chemical structures and relative easy modification permitted varied design and control of targeted properties and applications. In addition, this Nanomaterial accompanied with pseudo Electromagnetic fields permitted photonics, electronics and Quantum interactions with their surrounding that generated new materials properties. In this context, this short Review, intends to discuss many of these studies related with new materials based on graphene for light and electronic interactions, conductions, and new modes of non-classical light generation. It should be highlighted that these new materials and metamaterials are currently in progress. For this reason it was showed and discussed some representative examples from Fundamental Research with Potential Applications as well as for their incorporations to real Advanced devices and miniaturized instrumentation. In this way, it was proposed this Special issue entitled “Design and synthesis of Hybrids Graphene based Metamaterials”, in order to open and share the knowledge of the Current State of the Art in this Multidisciplinary field.


2019 ◽  
Vol 3 (2) ◽  
pp. 34
Author(s):  
Hiroshi Yamakawa

In a human society with emergent technology, the destructive actions of some pose a danger to the survival of all of humankind, increasing the need to maintain peace by overcoming universal conflicts. However, human society has not yet achieved complete global peacekeeping. Fortunately, a new possibility for peacekeeping among human societies using the appropriate interventions of an advanced system will be available in the near future. To achieve this goal, an artificial intelligence (AI) system must operate continuously and stably (condition 1) and have an intervention method for maintaining peace among human societies based on a common value (condition 2). However, as a premise, it is necessary to have a minimum common value upon which all of human society can agree (condition 3). In this study, an AI system to achieve condition 1 was investigated. This system was designed as a group of distributed intelligent agents (IAs) to ensure robust and rapid operation. Even if common goals are shared among all IAs, each autonomous IA acts on each local value to adapt quickly to each environment that it faces. Thus, conflicts between IAs are inevitable, and this situation sometimes interferes with the achievement of commonly shared goals. Even so, they can maintain peace within their own societies if all the dispersed IAs think that all other IAs aim for socially acceptable goals. However, communication channel problems, comprehension problems, and computational complexity problems are barriers to realization. This problem can be overcome by introducing an appropriate goal-management system in the case of computer-based IAs. Then, an IA society could achieve its goals peacefully, efficiently, and consistently. Therefore, condition 1 will be achievable. In contrast, humans are restricted by their biological nature and tend to interact with others similar to themselves, so the eradication of conflicts is more difficult.


SIMULATION ◽  
2012 ◽  
Vol 88 (9) ◽  
pp. 1080-1092 ◽  
Author(s):  
András Jávor ◽  
Attila Fűr

Simulation is aimed very often to solve problems of great complexity requiring – beyond using the advanced simulation software tools – platforms that enable the implementation of such software systems. In recent years the concept of cloud computing has emerged and is being applied more and more widely for solving such problems. This paper, beyond delineating the main trends of the development of distributed simulation over a grid, especially over the Internet through Web-based applications, highlights the concepts of service-based simulation system approach. This concept gives the possibility of implementing Web- or cloud agents and other ASP system compliant simulation services based on simulation standards. As a sample application, Fuzzy Web Service is demonstrated as a part of CASSANDRA 4.0 (Cognizant Adaptive Simulation System for Applications in Numerous Different Relevant Areas) that is developed by the McLeod Institute of Simulation Sciences Hungarian Center.


Sign in / Sign up

Export Citation Format

Share Document