Towards life-long adaptive agents: using metareasoning for combining knowledge-based planning with situated learning

Author(s):  
Priyam Parashar ◽  
Ashok K. Goel ◽  
Bradley Sheneman ◽  
Henrik I. Christensen

AbstractWe consider task planning for long-living intelligent agents situated in dynamic environments. Specifically, we address the problem of incomplete knowledge of the world due to the addition of new objects with unknown action models. We propose a multilayered agent architecture that uses meta-reasoning to control hierarchical task planning and situated learning, monitor expectations generated by a plan against world observations, forms goals and rewards for the situated reinforcement learner, and learns the missing planning knowledge relevant to the new objects. We use occupancy grids as a low-level representation for the high-level expectations to capture changes in the physical world due to the additional objects, and provide a similarity method for detecting discrepancies between the expectations and the observations at run-time; the meta-reasoner uses these discrepancies to formulate goals and rewards for the learner, and the learned policies are added to the hierarchical task network plan library for future re-use. We describe our experiments in the Minecraft and Gazebo microworlds to demonstrate the efficacy of the architecture and the technique for learning. We test our approach against an ablated reinforcement learning (RL) version, and our results indicate this form of expectation enhances the learning curve for RL while being more generic than propositional representations.

1993 ◽  
Author(s):  
Drew McDermott ◽  
Gregory Hager

2021 ◽  
Author(s):  
Aaron Babier ◽  
Binghao Zhang ◽  
Rafid Mahmood ◽  
Kevin L. Moore ◽  
Thomas G. Purdie ◽  
...  

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Mingli Wang ◽  
Huikuan Gu ◽  
Jiang Hu ◽  
Jian Liang ◽  
Sisi Xu ◽  
...  

Abstract Background and purpose To explore whether a highly refined dose volume histograms (DVH) prediction model can improve the accuracy and reliability of knowledge-based volumetric modulated arc therapy (VMAT) planning for cervical cancer. Methods and materials The proposed model underwent repeated refining through progressive training until the training samples increased from initial 25 prior plans up to 100 cases. The estimated DVHs derived from the prediction models of different runs of training were compared in 35 new cervical cancer patients to analyze the effect of such an interactive plan and model evolution method. The reliability and efficiency of knowledge-based planning (KBP) using this highly refined model in improving the consistency and quality of the VMAT plans were also evaluated. Results The prediction ability was reinforced with the increased number of refinements in terms of normal tissue sparing. With enhanced prediction accuracy, more than 60% of automatic plan-6 (AP-6) plans (22/35) can be directly approved for clinical treatment without any manual revision. The plan quality scores for clinically approved plans (CPs) and manual plans (MPs) were on average 89.02 ± 4.83 and 86.48 ± 3.92 (p < 0.001). Knowledge-based planning significantly reduced the Dmean and V18 Gy for kidney (L/R), the Dmean, V30 Gy, and V40 Gy for bladder, rectum, and femoral head (L/R). Conclusion The proposed model evolution method provides a practical way for the KBP to enhance its prediction ability with minimal human intervene. This highly refined prediction model can better guide KBP in improving the consistency and quality of the VMAT plans.


Cancers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 420 ◽  
Author(s):  
Alexander Delaney ◽  
Lei Dong ◽  
Anthony Mascia ◽  
Wei Zou ◽  
Yongbin Zhang ◽  
...  

Background: Radiotherapy treatment planning is increasingly automated and knowledge-based planning has been shown to match and sometimes improve upon manual clinical plans, with increased consistency and efficiency. In this study, we benchmarked a novel prototype knowledge-based intensity-modulated proton therapy (IMPT) planning solution, against three international proton centers. Methods: A model library was constructed, comprising 50 head and neck cancer (HNC) manual IMPT plans from a single center. Three external-centers each provided seven manual benchmark IMPT plans. A knowledge-based plan (KBP) using a standard beam arrangement for each patient was compared with the benchmark plan on the basis of planning target volume (PTV) coverage and homogeneity and mean organ-at-risk (OAR) dose. Results: PTV coverage and homogeneity of KBPs and benchmark plans were comparable. KBP mean OAR dose was lower in 32/54, 45/48 and 38/53 OARs from center-A, -B and -C, with 23/32, 38/45 and 23/38 being >2 Gy improvements, respectively. In isolated cases the standard beam arrangement or an OAR not being included in the model or being contoured differently, led to higher individual KBP OAR doses. Generating a KBP typically required <10 min. Conclusions: A knowledge-based IMPT planning solution using a single-center model could efficiently generate plans of comparable quality to manual HNC IMPT plans from centers with differing planning aims. Occasional higher KBP OAR doses highlight the need for beam angle optimization and manual review of KBPs. The solution furthermore demonstrated the potential for robust optimization.


Author(s):  
B. Chandrasekaran

AbstractI was among those who proposed problem solving methods (PSMs) in the late 1970s and early 1980s as a knowledge-level description of strategies useful in building knowledge-based systems. This paper summarizes the evolution of my ideas in the last two decades. I start with a review of the original ideas. From an artificial intelligence (AI) point of view, it is not PSMs as such, which are essentially high-level design strategies for computation, that are interesting, but PSMs associated with tasks that have a relation to AI and cognition. They are also interesting with respect to cognitive architecture proposals such as Soar and ACT-R: PSMs are observed regularities in the use of knowledge that an exclusive focus on the architecture level might miss, the latter providing no vocabulary to talk about these regularities. PSMs in the original conception are closely connected to a specific view of knowledge: symbolic expressions represented in a repository and retrieved as needed. I join critics of this view, and maintain with them that most often knowledge is not retrieved from a base as much as constructed as needed. This criticism, however, raises the question of what is in memory that is not knowledge as traditionally conceived in AI, but can support theconstructionof knowledge in predicate–symbolic form. My recent proposal about cognition and multimodality offers a possible answer. In this view, much of memory consists of perceptual and kinesthetic images, which can be recalled during deliberation and from which internal perception can generate linguistic–symbolic knowledge. For example, from a mental image of a configuration of objects, numerous sentences can be constructed describing spatial relations between the objects. My work on diagrammatic reasoning is an implemented example of how this might work. These internal perceptions on imagistic representations are a new kind of PSM.


Author(s):  
Hyunmin Cheong ◽  
Wei Li ◽  
Francesco Iorio

This paper presents a novel application of gamification for collecting high-level design descriptions of objects. High-level design descriptions entail not only superficial characteristics of an object, but also function, behavior, and requirement information of the object. Such information is difficult to obtain with traditional data mining techniques. For acquisition of high-level design information, we investigated a multiplayer game, “Who is the Pretender?” in an offline context. Through a user study, we demonstrate that the game offers a more fun, enjoyable, and engaging experience for providing descriptions of objects than simply asking people to list them. We also show that the game elicits more high-level, problem-oriented requirement descriptions and less low-level, solution-oriented structure descriptions due to the unique game mechanics that encourage players to describe objects at an abstract level. Finally, we present how crowdsourcing can be used to generate game content that facilitates the gameplay. Our work contributes towards acquiring high-level design knowledge that is essential for developing knowledge-based CAD systems.


2020 ◽  
Vol 69 ◽  
pp. 471-500
Author(s):  
Shih-Yun Lo ◽  
Shiqi Zhang ◽  
Peter Stone

Intelligent mobile robots have recently become able to operate autonomously in large-scale indoor environments for extended periods of time. In this process, mobile robots need the capabilities of both task and motion planning. Task planning in such environments involves sequencing the robot’s high-level goals and subgoals, and typically requires reasoning about the locations of people, rooms, and objects in the environment, and their interactions to achieve a goal. One of the prerequisites for optimal task planning that is often overlooked is having an accurate estimate of the actual distance (or time) a robot needs to navigate from one location to another. State-of-the-art motion planning algorithms, though often computationally complex, are designed exactly for this purpose of finding routes through constrained spaces. In this article, we focus on integrating task and motion planning (TMP) to achieve task-level-optimal planning for robot navigation while maintaining manageable computational efficiency. To this end, we introduce TMP algorithm PETLON (Planning Efficiently for Task-Level-Optimal Navigation), including two configurations with different trade-offs over computational expenses between task and motion planning, for everyday service tasks using a mobile robot. Experiments have been conducted both in simulation and on a mobile robot using object delivery tasks in an indoor office environment. The key observation from the results is that PETLON is more efficient than a baseline approach that pre-computes motion costs of all possible navigation actions, while still producing plans that are optimal at the task level. We provide results with two different task planning paradigms in the implementation of PETLON, and offer TMP practitioners guidelines for the selection of task planners from an engineering perspective.


2021 ◽  
Vol 46 (2) ◽  
pp. 66
Author(s):  
Yoshihiro Ueda ◽  
Yuya Nitta ◽  
Masaru Isono ◽  
Shingo Ohira ◽  
Akira Masaoka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document