Implicational markedness and frequency in constraint-based computational models of phonological learning

2010 ◽  
Vol 37 (3) ◽  
pp. 565-606 ◽  
Author(s):  
GAJA JAROSZ

ABSTRACTThis study examines the interacting roles of implicational markedness and frequency from the joint perspectives of formal linguistic theory, phonological acquisition and computational modeling. The hypothesis that child grammars are rankings of universal constraints, as in Optimality Theory (Prince & Smolensky, 1993/2004), that learning involves a gradual transition from an unmarked initial state to the target grammar, and that order of acquisition is guided by frequency, along the lines of Levelt, Schiller & Levelt (2000), is investigated. The study reviews empirical findings on syllable structure acquisition in Dutch, German, French and English, and presents novel findings on Polish. These comparisons reveal that, to the extent allowed by implicational markedness universals, frequency covaries with acquisition order across languages. From the computational perspective, the paper shows that interacting roles of markedness and frequency in a class of constraint-based phonological learning models embody this hypothesis, and their predictions are illustrated via computational simulation.

Language ◽  
2010 ◽  
Vol 86 (3) ◽  
pp. 716-720
Author(s):  
Anne-Michelle Tessier

2016 ◽  
Vol 78 (5) ◽  
pp. 396-403 ◽  
Author(s):  
Samuel Potter ◽  
Rebecca M. Krall ◽  
Susan Mayo ◽  
Diane Johnson ◽  
Kim Zeidler-Watters ◽  
...  

With the looming global population crisis, it is more important now than ever that students understand what factors influence population dynamics. We present three learning modules with authentic, student-centered investigations that explore rates of population growth and the importance of resources. These interdisciplinary modules integrate biology, mathematics, and computer-literacy concepts aligned with the Next Generation Science Standards. The activities are appropriate for middle and high school science classes and for introductory college-level biology courses. The modules incorporate experimentation, data collection and analysis, drawing conclusions, and application of studied principles to explore factors affecting population dynamics in fruit flies. The variables explored include initial population structure, food availability, and space of the enclosed population. In addition, we present a computational simulation in which students can alter the same variables explored in the live experimental modules to test predictions on the consequences of altering the variables. Free web-based graphing (Joinpoint) and simulation software (NetLogo) allows students to work at home or at school.


2021 ◽  
Author(s):  
Patrick McNamara ◽  
Wesley J Wildman ◽  
George Hodulik ◽  
David Rohr

Abstract Study Objectives To test and extend Levin & Nielsen’s (2007) Affective Network Dysfunction (AND) model with nightmare disorder (ND) image characteristics, and then to implement the extension as a computational simulation, the Disturbed Dreaming Model (DDM). Methods We used AnyLogic V7.2 to computationally implement an extended AND model incorporating quantitative effects of image characteristics including valence, dominance, and arousal. We explored the DDM parameter space by varying parameters, running approximately one million runs, each for one month of model time, varying pathway bifurcation thresholds, image characteristics, and individual-difference variables to quantitively evaluate their combinatory effects on nightmare symptomology. Results The DDM shows that the AND model extended with pathway bifurcations and image properties is computationally coherent. Varying levels of image properties we found that when nightmare images exhibit lower dominance and arousal levels, the ND agent will choose to sleep but then has a traumatic nightmare, whereas, when images exhibit greater than average dominance and arousal levels, the nightmares trigger sleep-avoidant behavior, but lower overall nightmare distress at the price of exacerbating nightmare effects during waking hours. Conclusions Computational simulation of nightmare symptomology within the AND framework suggests that nightmare image properties significantly influence nightmare symptomology. Computational models for sleep and dream studies are powerful tools for testing quantitative effects of variables affecting nightmare symptomology and confirms the value of extending the Levin & Nielsen AND model of disturbed dreaming/ND.


Author(s):  
Christian Uffmann

The relationship between phonological theory and World Englishes is generally characterized by a mutual lack of interest. This chapter argues for a greater engagement of both fields with each other, looking at constraint-based theories of phonology, especially Optimality Theory (OT), as a case in point. Contact varieties of English provide strong evidence for synchronically active constraints, as it is substrate or L1 constraints that are regularly transferred to the contact variety, not rules. Additionally, contact varieties that have properties that are in some way ‘in between’ the substrate and superstrate systems provide evidence for constraint hierarchies or implicational relationships between constraints, illustrated here primarily with examples from syllable structure. Conversely, for a scholar working on the description of World Englishes, OT can offer an explanation of where the patterns found in a contact variety come from, namely from the transfer of substrate constraint rankings (and subsequent gradual constraint demotion).


Author(s):  
Junko Itô ◽  
R. Armin Mester

The following pages sketch a system of constraints intended to sharpen and organize a number of current assumptions surrounding the concept of “prosodic licensing”, as proposed in Itô (1988) and further developed in later work (Bagemihl 1991; Charette 1990; Goldsmith 1990; Inkelas 1991; Itô and Mester 1991; Kaye 1990; Lombardi 1991; Piggott 1991; Zec 1988; and others). The proposal to be developed below draws on Optimality Theory (Prince and Smolensky 1993); one of the goals is to explicate the notion of the coda as a “secondary licenser” (Goldsmith 1990) and to clarify the privileged status of geminate and partial geminate clusters (Prince 1984) with respect to syllabification. After laying out some background assumptions (Section 1), we present the definitions and constraints that form the core of our theory of licensing (Section 2). We illustrate the approach with an analysis of the syllable structure of Japanese (Section 3) and conclude the paper with a discussion of remaining issues and problems relating to the general typology of syllabification systems (Section 4).


2018 ◽  
Vol 15 (1) ◽  
Author(s):  
Frank T. Bergmann ◽  
Jonathan Cooper ◽  
Matthias König ◽  
Ion Moraru ◽  
David Nickerson ◽  
...  

AbstractThe creation of computational simulation experiments to inform modern biological research poses challenges to reproduce, annotate, archive, and share such experiments. Efforts such as SBML or CellML standardize the formal representation of computational models in various areas of biology. The Simulation Experiment Description Markup Language (SED-ML) describes what procedures the models are subjected to, and the details of those procedures. These standards, together with further COMBINE standards, describe models sufficiently well for the reproduction of simulation studies among users and software tools. The Simulation Experiment Description Markup Language (SED-ML) is an XML-based format that encodes, for a given simulation experiment, (i) which models to use; (ii) which modifications to apply to models before simulation; (iii) which simulation procedures to run on each model; (iv) how to post-process the data; and (v) how these results should be plotted and reported. SED-ML Level 1 Version 1 (L1V1) implemented support for the encoding of basic time course simulations. SED-ML L1V2 added support for more complex types of simulations, specifically repeated tasks and chained simulation procedures. SED-ML L1V3 extends L1V2 by means to describe which datasets and subsets thereof to use within a simulation experiment.


2019 ◽  
Vol 300 ◽  
pp. 03001
Author(s):  
Branko Nečemer ◽  
Janez Kramberger ◽  
Nejc Novak ◽  
Srečko Glodež

A computational simulation of fracture behaviour in auxetic cellular structure, subjected to multiaxial loading is presented in this paper. A fracture behaviour of the 3D (three-dimensional) chiral auxetic structure under multiaxial loading conditions was studied. The computational models were used to study the geometry effect of the unit cell on the Poisson’s ratio and fracture behaviour of the analysed chiral auxetic structure. A 3D computational model was built using FEM-code LS DYNA. The discrete computational model of chiral auxetic structure was built using beam finite elements. The lattice model of the analysed auxetic structure was positioned between rigid plates and assembled in a way to simulate a hydro-compression loading conditions. Between the contacting surfaces interactions in normal (contact) and tangential direction (friction) with the node-to-surface approach were simulated. A developed computational model offers insight in the fracture behaviour of considered auxetic cellular structure and helps to better understanding their crushing behaviour under impact multiaxial loading.


Author(s):  
Sergio Castellanos ◽  
Luis-Felipe Rodríguez

Autonomous agents (AAs) are designed to embody the natural intelligence by incorporating cognitive mechanisms that are applied to evaluate stimuli from an emotional perspective. Computational models of emotions (CMEs) implement mechanisms of human information processing in order to provide AAs for a capability to assign emotional values to perceived stimuli and implement emotion-driven behaviors. However, a major challenge in the design of CMEs is how cognitive information is projected from the architecture of AAs. This article presents a cognitive model for CMEs based on appraisal theory aimed at modeling AAs' interactions between cognitive and affective processes. The proposed scheme explains the influence of AAs' cognition on emotions by fuzzy membership functions associated to appraisal dimensions. The computational simulation is designed in the context of an integrative framework to facilitate the development of CMEs, which are capable of interacting with cognitive components of AAs. This article presents a case study and experiment that demonstrate the functionality of the proposed models.


2016 ◽  
Vol 793 ◽  
pp. 316-334 ◽  
Author(s):  
A. Miranda-Barea ◽  
C. Fabrellas-García ◽  
L. Parras ◽  
C. del Pino

We conduct experiments in a circular pipe with rotating Hagen–Poiseuille flow (RHPF) to which we apply spin-down or impulsive spin-down to rest, in order to analyse the threshold between convective and absolute instabilities through flow visualisations in the inlet region of the pipe. For a constant value of the Reynolds number,$Re$, the finite-amplitude wave packets generated by the arbitrary perturbation that results by reducing the swirl parameter, propagate upstream or downstream depending on the initial value of the swirl parameter,$L_{0}$. In fact, the main characteristic of the flow is that the velocity front of these wave packets changes from negative to positive when absolutely unstable modes are present in the initial state. The experimental results show that spin-down becomes a precise, reliable procedure to detect the onset of absolute instabilities. In addition, we give evidence of a gradual transition for Reynolds numbers ranging from 300 to 500 where a mode shift from$n=-1$to$n=-2$appears in the absolutely unstable region.


Sign in / Sign up

Export Citation Format

Share Document