The thermodynamics of crystal lattices

Author(s):  
Max Born ◽  
Mary Bradburn

In previous papers by Misra(1) and by Born and Misra(2) lattice sums of the type required in discussing the stability of a cubic crystal of the Bravais type in which the forces are central have been calculated. In the investigation of the thermodynamic properties of crystals a more general type of lattice sum occurs, which involves the phases of the waves. In the present paper a method of calculating these sums is developed and tables are computed.

Author(s):  
M. Born

The theory of lattice deformations is presented in a new form, using the tensor calculus. The case of central forces is worked out in detail, and the results are applied to some simple hexagonal lattices. It is shown that the Bravais hexagonal lattice is unstable but the close-packed hexagonal lattice stable. The elastic constants of this lattice are calculated.


1967 ◽  
Vol 20 (12) ◽  
pp. 2551 ◽  
Author(s):  
CK Coogan

The conditions under which direct lattice sums of electric potential, field, and field gradient converge are discussed. The analogous conditions under which differences in these lattice sums, for two points in the crystal, converge are also outlined. These conditions are applied to direct lattice sum calculations in crystals in which the ideal lattice is distorted close to a defect of some kind. The conver- gence conditions are then applied to the case of determining the direct lattice sums in crystals in which higher symmetry properties can be invoked, which leads to a knowledge by inspection of the lattice sum at one point in the unit cell.


2001 ◽  
Vol 429 ◽  
pp. 343-380 ◽  
Author(s):  
BRUCE R. SUTHERLAND

The evolution and stability of two-dimensional, large-amplitude, non-hydrostatic internal wavepackets are examined analytically and by numerical simulations. The weakly nonlinear dispersion relation for horizontally periodic, vertically compact internal waves is derived and the results are applied to assess the stability of weakly nonlinear wavepackets to vertical modulations. In terms of Θ, the angle that lines of constant phase make with the vertical, the wavepackets are predicted to be unstable if [mid ]Θ[mid ] < Θc, where Θc = cos−1 (2/3)1/2 ≃ 35.3° is the angle corresponding to internal waves with the fastest vertical group velocity. Fully nonlinear numerical simulations of finite-amplitude wavepackets confirm this prediction: the amplitude of wavepackets with [mid ]Θ[mid ] > Θc decreases over time; the amplitude of wavepackets with [mid ]Θ[mid ] < Θc increases initially, but then decreases as the wavepacket subdivides into a wave train, following the well-known Fermi–Pasta–Ulam recurrence phenomenon.If the initial wavepacket is of sufficiently large amplitude, it becomes unstable in the sense that eventually it convectively overturns. Two new analytic conditions for the stability of quasi-plane large-amplitude internal waves are proposed. These are qualitatively and quantitatively different from the parametric instability of plane periodic internal waves. The ‘breaking condition’ requires not only that the wave is statically unstable but that the convective instability growth rate is greater than the frequency of the waves. The critical amplitude for breaking to occur is found to be ACV = cot Θ (1 + cos2 Θ)/2π, where ACV is the ratio of the maximum vertical displacement of the wave to its horizontal wavelength. A second instability condition proposes that a statically stable wavepacket may evolve so that it becomes convectively unstable due to resonant interactions between the waves and the wave-induced mean flow. This hypothesis is based on the assumption that the resonant long wave–short wave interaction, which Grimshaw (1977) has shown amplifies the waves linearly in time, continues to amplify the waves in the fully nonlinear regime. Using linear theory estimates, the critical amplitude for instability is ASA = sin 2Θ/(8π2)1/2. The results of numerical simulations of horizontally periodic, vertically compact wavepackets show excellent agreement with this latter stability condition. However, for wavepackets with horizontal extent comparable with the horizontal wavelength, the wavepacket is found to be stable at larger amplitudes than predicted if Θ [lsim ] 45°. It is proposed that these results may explain why internal waves generated by turbulence in laboratory experiments are often observed to be excited within a narrow frequency band corresponding to Θ less than approximately 45°.


2019 ◽  
Vol 116 (4) ◽  
pp. 1110-1115 ◽  
Author(s):  
Bingqing Cheng ◽  
Edgar A. Engel ◽  
Jörg Behler ◽  
Christoph Dellago ◽  
Michele Ceriotti

Thermodynamic properties of liquid water as well as hexagonal (Ih) and cubic (Ic) ice are predicted based on density functional theory at the hybrid-functional level, rigorously taking into account quantum nuclear motion, anharmonic fluctuations, and proton disorder. This is made possible by combining advanced free-energy methods and state-of-the-art machine-learning techniques. The ab initio description leads to structural properties in excellent agreement with experiments and reliable estimates of the melting points of light and heavy water. We observe that nuclear-quantum effects contribute a crucial 0.2 meV/H2O to the stability of ice Ih, making it more stable than ice Ic. Our computational approach is general and transferable, providing a comprehensive framework for quantitative predictions of ab initio thermodynamic properties using machine-learning potentials as an intermediate step.


1963 ◽  
Vol 41 (12) ◽  
pp. 2166-2173 ◽  
Author(s):  
J. S. Kirkaldy ◽  
D. Weichert ◽  
Zia-Ul- Haq

The second law requirement that the Onsager L matrix for isothermal diffusion in a stable solution be positive definite and the stability condition for such a solution that the Hessian of the Gibb's free energy be positive definite impose on the diffusion D matrix the condition that it always have real and positive eigenvalues. This condition ensures that solutions of the differential equations for diffusion will always relax in a nonperiodic way.


Author(s):  
Max Born

The stability of lattices is discussed from the standpoint of the method of small vibrations. It is shown that it is not necessary to determine the whole vibrational spectrum, but only its long wave part. The stability conditions are nothing but the positive definiteness of the macroscopic deformation energy, and can be expressed in the form of inequalities for the elastic constants. A new method is explained for calculating these as lattice sums, and this method is applied to the three monatomic lattice types assuming central forces. In this way one obtains a simple explanation of the fact that the face-centred lattice is stable, whereas the simple lattice is always unstable and the body-centred also except for small exponents of the attractive forces. It is indicated that this method might be used for an improvement of the, at present, rather unsatisfactory theory of strength.


2011 ◽  
Vol 672 ◽  
pp. 5-32 ◽  
Author(s):  
OUTI TAMMISOLA ◽  
ATSUSHI SASAKI ◽  
FREDRIK LUNDELL ◽  
MASAHARU MATSUBARA ◽  
L. DANIEL SÖDERBERG

The stability of a plane liquid sheet is studied experimentally and theoretically, with an emphasis on the effect of the surrounding gas. Co-blowing with a gas velocity of the same order of magnitude as the liquid velocity is studied, in order to quantify its effect on the stability of the sheet. Experimental results are obtained for a water sheet in air at Reynolds number Rel = 3000 and Weber number We = 300, based on the half-thickness of the sheet at the inlet, water mean velocity at the inlet, the surface tension between water and air and water density and viscosity. The sheet is excited with different frequencies at the inlet and the growth of the waves in the streamwise direction is measured. The growth rate curves of the disturbances for all air flow velocities under study are found to be within 20% of the values obtained from a local spatial stability analysis, where water and air viscosities are taken into account, while previous results from literature assuming inviscid air overpredict the most unstable wavelength with a factor 3 and the growth rate with a factor 2. The effect of the air flow on the stability of the sheet is scrutinized numerically and it is concluded that the predicted disturbance growth scales with (i) the absolute velocity difference between water and air (inviscid effect) and (ii) the square root of the shear from air on the water surface (viscous effect).


Author(s):  
Rama Dhar Misra

On the assumption that the potential energy of the three cubic lattices of the Bravais type consists of two terms, an attractive one proportional to r−m and a repulsive one proportional to r−n, n > m, stability conditions are expressed in the form that two functions of the number n should be monotonically increasing. These functions have been calculated numerically for n = 4 to 15, and are represented as curves with the abscissa n. The result is that the face-centred lattice is completely stable, that the body-centred lattice is unstable for large exponents in the law of force, and that the simple lattice is always unstable,—in complete agreement with the results of Part I.


Author(s):  
M. Born ◽  
R. Fürth

The energy density of a cubic lattice, homogeneously deformed by a force acting in the direction of one axis, is calculated, and the equilibrium conditions and the stability conditions for any arbitrary small additional deformations are derived. A special assumption is made as to the law of force between the atoms, and the numerical calculations are performed for the face-centred lattice. In this way the strain as a function of the deformation is calculated and, from the stability conditions, the tensile strength is determined. The results are not in agreement with the experimental facts, and the possible reasons for this disagreement are discussed.


Sign in / Sign up

Export Citation Format

Share Document