scholarly journals The classification of rank 3 reflective hyperbolic lattices over

2016 ◽  
Vol 164 (2) ◽  
pp. 221-257
Author(s):  
ALICE MARK

AbstractThere are 432 strongly squarefree symmetric bilinear forms of signature (2, 1) defined over$\mathbb{Z}[\sqrt{2}]$whose integral isometry groups are generated up to finite index by finitely many reflections. We adapted Allcock's method (based on Nikulin's) of analysis for the 2-dimensional Weyl chamber to the real quadratic setting, and used it to produce a finite list of quadratic forms which contains all of the ones of interest to us as a sub-list. The standard method for determining whether a hyperbolic reflection group is generated up to finite index by reflections is an algorithm of Vinberg. However, for a large number of our quadratic forms the computation time required by Vinberg's algorithm was too long. We invented some alternatives, which we present here.

Author(s):  
Yashpal Jitarwal ◽  
Tabrej Ahamad Khan ◽  
Pawan Mangal

In earlier times fruits were sorted manually and it was very time consuming and laborious task. Human sorted the fruits of the basis of shape, size and color. Time taken by human to sort the fruits is very large therefore to reduce the time and to increase the accuracy, an automatic classification of fruits comes into existence.To improve this human inspection and reduce time required for fruit sorting an advance technique is developed that accepts information about fruits from their images, and is called as Image Processing Technique.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Olga Majewska ◽  
Charlotte Collins ◽  
Simon Baker ◽  
Jari Björne ◽  
Susan Windisch Brown ◽  
...  

Abstract Background Recent advances in representation learning have enabled large strides in natural language understanding; However, verbal reasoning remains a challenge for state-of-the-art systems. External sources of structured, expert-curated verb-related knowledge have been shown to boost model performance in different Natural Language Processing (NLP) tasks where accurate handling of verb meaning and behaviour is critical. The costliness and time required for manual lexicon construction has been a major obstacle to porting the benefits of such resources to NLP in specialised domains, such as biomedicine. To address this issue, we combine a neural classification method with expert annotation to create BioVerbNet. This new resource comprises 693 verbs assigned to 22 top-level and 117 fine-grained semantic-syntactic verb classes. We make this resource available complete with semantic roles and VerbNet-style syntactic frames. Results We demonstrate the utility of the new resource in boosting model performance in document- and sentence-level classification in biomedicine. We apply an established retrofitting method to harness the verb class membership knowledge from BioVerbNet and transform a pretrained word embedding space by pulling together verbs belonging to the same semantic-syntactic class. The BioVerbNet knowledge-aware embeddings surpass the non-specialised baseline by a significant margin on both tasks. Conclusion This work introduces the first large, annotated semantic-syntactic classification of biomedical verbs, providing a detailed account of the annotation process, the key differences in verb behaviour between the general and biomedical domain, and the design choices made to accurately capture the meaning and properties of verbs used in biomedical texts. The demonstrated benefits of leveraging BioVerbNet in text classification suggest the resource could help systems better tackle challenging NLP tasks in biomedicine.


2014 ◽  
Vol 2014 ◽  
pp. 1-19
Author(s):  
Liliana Ibeth Barbosa-Santillán ◽  
Inmaculada Álvarez-de-Mon y-Rego

This paper presents an approach to create what we have called a Unified Sentiment Lexicon (USL). This approach aims at aligning, unifying, and expanding the set of sentiment lexicons which are available on the web in order to increase their robustness of coverage. One problem related to the task of the automatic unification of different scores of sentiment lexicons is that there are multiple lexical entries for which the classification of positive, negative, or neutral{P,N,Z}depends on the unit of measurement used in the annotation methodology of the source sentiment lexicon. Our USL approach computes the unified strength of polarity of each lexical entry based on the Pearson correlation coefficient which measures how correlated lexical entries are with a value between 1 and −1, where 1 indicates that the lexical entries are perfectly correlated, 0 indicates no correlation, and −1 means they are perfectly inversely correlated and so is the UnifiedMetrics procedure for CPU and GPU, respectively. Another problem is the high processing time required for computing all the lexical entries in the unification task. Thus, the USL approach computes a subset of lexical entries in each of the 1344 GPU cores and uses parallel processing in order to unify 155802 lexical entries. The results of the analysis conducted using the USL approach show that the USL has 95.430 lexical entries, out of which there are 35.201 considered to be positive, 22.029 negative, and 38.200 neutral. Finally, the runtime was 10 minutes for 95.430 lexical entries; this allows a reduction of the time computing for the UnifiedMetrics by 3 times.


1979 ◽  
Vol 34 (10) ◽  
pp. 1147-1157 ◽  
Author(s):  
Helmut Hebenstreit ◽  
Kurt Suchy

Abstract For media anisotropic (but not bi-anisotropic) in the comoving frame polarization relations and dispersion equations are derived using bilinear forms and quadratic forms, respectively. Specializations for media electrically anisotropic but magnetically isotropic (or vice versa) are given using (left and right) eigenvectors and eigenvalues of the material tensors.


2009 ◽  
Vol 17 (1) ◽  
pp. 85-105 ◽  
Author(s):  
Walter H. Hirtle

Abstract This is an attempt to discern more clearly the underlying or POTENTIAL meaning of the simple form of the English verb, described in Hirtle 1967 as 'perfective'. Vendler's widely accepted classification of events into ACCOMPLISHMENTS, ACHIEVEMENTS, ACTIVITIES, and STATES is examined from the point of view of the time necessarily contained between the beginning and end of any event, i.e. EVENT TIME as represented by the simple form. This examination justifies the well known dynamic/stative dichotomy by showing that event time is evoked in two different ways, that, in fact, the simple form has two ACTUAL significates. Further reflection on the difference between the two types thus expressed—developmental or action-like events and non-developmental or state-like events—leads to the conclusion that the simple form provides a representation of the time required to situate all the impressions involved in the notional or lexical import of the verb.


2017 ◽  
Vol 2 (3) ◽  
pp. 32-39
Author(s):  
Aya Khalid Naji ◽  
Saad Najim Alsaad

In the development of 3G devices, all elements of multimedia (text, image, audio, and video) are becoming crucial choice for communication. The secured system in 3G devices has become an issue of importance, on which lot of research is going on. The traditional cryptosystem like DES, AES, and RSA do not able to meet with the properties of the new generation of digital mobile devices. This paper presents an implementation of video protection of fully encrypted using Elliptic Curve   Cryptography (ECC) on a mobile device. The Android platform is used for this purpose.  The results refer that the two important criteria of video mobile encryption: the short computation time required and high confidentially are provided.


Author(s):  
M. A. Ganter ◽  
B. P. Isarankura

Abstract A technique termed space partitioning is employed which dramatically reduces the computation time required to detect dynamic collision during computer simulation. The simulated environment is composed of two nonconvex polyhedra traversing two general six degree of freedom trajectories. This space partitioning technique reduces collision detection time by subdividing the space containing a given object into a set of linear partitions. Using these partitions, all testing can be confined to the local region of overlap between the two objects. Further, all entities contained in the partitions inside the region of overlap are ordered based on their respective minimums and maximums to further reduce testing. Experimental results indicate a worst-case collision detection time for two one thousand faced objects is approximately three seconds per trajectory step.


1982 ◽  
Vol 34 (6) ◽  
pp. 1276-1302 ◽  
Author(s):  
Andrew B. Carson ◽  
Murray A. Marshall

We take the definition of a Witt ring to be that given in [13], i.e., it is what is called a strongly representational Witt ring in [8]. The classical example is obtained by considering quadratic forms over a field of characteristic ≠ 2 [17], but Witt rings also arise in studying quadratic forms or symmetric bilinear forms over more general types of rings [5,7, 8, 9]. An interesting problem in the theory is that of classifying Witt rings in case the associated group G is finite. The reduced case, i.e., the case where the nilradical is trivial, is better understood. In particular, the above classification problem is completely solved in this case [4, 12, or 13, Corollary 6.25]. Thus, the emphasis here is on the non-reduced case. Although some of the results given here do not require |G| < ∞, they do require some finiteness assumption. Certainly, the main goal here is to understand the finite case, and in this sense this paper is a continuation of work started by the second author in [13, Chapter 5].


2019 ◽  
Vol 14 (5) ◽  
Author(s):  
Ashley Guy ◽  
Alan Bowling

Microscale dynamic simulations can require significant computational resources to generate desired time evolutions. Microscale phenomena are often driven by even smaller scale dynamics, requiring multiscale system definitions to combine these effects. At the smallest scale, large active forces lead to large resultant accelerations, requiring small integration time steps to fully capture the motion and dictating the integration time for the entire model. Multiscale modeling techniques aim to reduce this computational cost, often by separating the system into subsystems or coarse graining to simplify calculations. A multiscale method has been previously shown to greatly reduce the time required to simulate systems in the continuum regime while generating equivalent time histories. This method identifies a portion of the active and dissipative forces that cancel and contribute little to the overall motion. The forces are then scaled to eliminate these noncontributing portions. This work extends that method to include an adaptive scaling method for forces that have large changes in magnitude across the time history. Results show that the adaptive formulation generates time histories similar to those of the unscaled truth model. Computation time reduction is consistent with the existing method.


Sign in / Sign up

Export Citation Format

Share Document