A Hausdorff measure classification of polar lateral boundary sets for superdiffusions

2000 ◽  
Vol 128 (3) ◽  
pp. 549-559
Author(s):  
YUAN-CHUNG SHEU

Consider an (L, α)-superdiffusion X, 1 < α [les ] 2, in a smooth cylinder Q = ℝ+ × D. Where L is a uniformly elliptic operator on ℝ+ × ℝd and D is a bounded smooth domain in ℝd. Criteria for determining which (internal) subsets of Q are not hit by the graph [Gscr ] of X were established by Dynkin [5] in terms of Bessel capacity and according to Sheu [14] in terms of restricted Hausdorff dimension (partial results were also obtained by Barlow, Evans and Perkins [3]). While using Poisson capacity on the lateral boundary ∂Q of Q, Kuznetsov [10] recently characterized complete subsets of ∂Q which have no intersection with [Gscr ]. In this work, we examine the relations between Poisson capacity and restricted Hausdorff measure. According to our results, the critical restricted Hausdorff dimension for the lateral [Gscr ]-polarity is d − (3 − α)/(α − 1). (A similar result also holds for the case d = (3 − α)/(α − 1)). This investigation provides a different proof for the critical dimension of the boundary polarity for the range of X (as established earlier by Le Gall [12] for L = Δ, α = 2 and by Dynkin and Kuznetsov [7] for the general case).

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Matteo Focardi ◽  
Emanuele Spadaro

AbstractBuilding upon the recent results in [M. Focardi and E. Spadaro, On the measure and the structure of the free boundary of the lower-dimensional obstacle problem, Arch. Ration. Mech. Anal. 230 2018, 1, 125–184] we provide a thorough description of the free boundary for the solutions to the fractional obstacle problem in {\mathbb{R}^{n+1}} with obstacle function φ (suitably smooth and decaying fast at infinity) up to sets of null {{\mathcal{H}}^{n-1}} measure. In particular, if φ is analytic, the problem reduces to the zero obstacle case dealt with in [M. Focardi and E. Spadaro, On the measure and the structure of the free boundary of the lower-dimensional obstacle problem, Arch. Ration. Mech. Anal. 230 2018, 1, 125–184] and therefore we retrieve the same results:(i)local finiteness of the {(n-1)}-dimensional Minkowski content of the free boundary (and thus of its Hausdorff measure),(ii){{\mathcal{H}}^{n-1}}-rectifiability of the free boundary,(iii)classification of the frequencies and of the blowups up to a set of Hausdorff dimension at most {(n-2)} in the free boundary.Instead, if {\varphi\in C^{k+1}(\mathbb{R}^{n})}, {k\geq 2}, similar results hold only for distinguished subsets of points in the free boundary where the order of contact of the solution with the obstacle function φ is less than {k+1}.


2021 ◽  
pp. 108128652110194
Author(s):  
Fengjuan Meng ◽  
Cuncai Liu ◽  
Chang Zhang

This work is devoted to the following nonlocal extensible beam equation with time delay: [Formula: see text] on a bounded smooth domain [Formula: see text]. The main purpose of this paper is to consider the long-time dynamics of the system. Under suitable assumptions, the quasi-stability property of the system is established, based on which the existence and regularity of a finite-dimensional compact global attractor are obtained. Moreover, the existence of exponential attractors is proved.


2018 ◽  
Vol 18 (2) ◽  
pp. 289-302
Author(s):  
Zhijun Zhang

AbstractThis paper is concerned with the boundary behavior of the unique convex solution to a singular Dirichlet problem for the Monge–Ampère equation\operatorname{det}D^{2}u=b(x)g(-u),\quad u<0,\,x\in\Omega,\qquad u|_{\partial% \Omega}=0,where Ω is a strictly convex and bounded smooth domain in{\mathbb{R}^{N}}, with{N\geq 2},{g\in C^{1}((0,\infty),(0,\infty))}is decreasing in{(0,\infty)}and satisfies{\lim_{s\rightarrow 0^{+}}g(s)=\infty}, and{b\in C^{\infty}(\Omega)}is positive in Ω, but may vanish or blow up on the boundary. We find a new structure condition ongwhich plays a crucial role in the boundary behavior of such solution.


Author(s):  
Zongming Guo ◽  
Zhongyuan Liu

We continue to study the nonlinear fourth-order problem TΔu – DΔ2u = λ/(L + u)2, –L < u < 0 in Ω, u = 0, Δu = 0 on ∂Ω, where Ω ⊂ ℝN is a bounded smooth domain and λ > 0 is a parameter. When N = 2 and Ω is a convex domain, we know that there is λc > 0 such that for λ ∊ (0, λc) the problem possesses at least two regular solutions. We will see that the convexity assumption on Ω can be removed, i.e. the main results are still true for a general bounded smooth domain Ω. The main technique in the proofs of this paper is the blow-up argument, and the main difficulty is the analysis of touch-down behaviour.


Author(s):  
Amandine Aftalion ◽  
Manuel del Pino ◽  
René Letelier

We consider the problem Δu = λf(u) in Ω, u(x) tends to +∞ as x approaches ∂Ω. Here, Ω is a bounded smooth domain in RN, N ≥ 1 and λ is a positive parameter. In this paper, we are interested in analysing the role of the sign changes of the function f in the number of solutions of this problem. As a consequence of our main result, we find that if Ω is star-shaped and f behaves like f(u) = u(u−a)(u−1) with ½ < a < 1, then there is a solution bigger than 1 for all λ and there exists λ0 > 0 such that, for λ < λ0, there is no positive solution that crosses 1 and, for λ > λ0, at least two solutions that cross 1. The proof is based on a priori estimates, the construction of barriers and topological-degree arguments.


Author(s):  
Hongwen Guo ◽  
Dihe Hu

We weaken the open set condition and define a finite intersection property in the construction of the random recursive sets. We prove that this larger class of random sets are fractals in the sense of Taylor, and give conditions when these sets have positive and finite Hausdorff measures, which in certain extent generalize some of the known results, about random recursive fractals.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Ignacio Guerra

<p style='text-indent:20px;'>We consider the following semilinear problem with a gradient term in the nonlinearity</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{align*} -\Delta u = \lambda \frac{(1+|\nabla u|^q)}{(1-u)^p}\quad\text{in}\quad\Omega,\quad u&gt;0\quad \text{in}\quad \Omega, \quad u = 0\quad\text{on}\quad \partial \Omega. \end{align*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ \lambda,p,q&gt;0 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M2">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula> be a bounded, smooth domain in <inline-formula><tex-math id="M3">\begin{document}$ {\mathbb R}^N $\end{document}</tex-math></inline-formula>. We prove that when <inline-formula><tex-math id="M4">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula> is a unit ball and <inline-formula><tex-math id="M5">\begin{document}$ p = 1 $\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id="M6">\begin{document}$ q\in (0,q^*(N)) $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M7">\begin{document}$ q^*(N)\in (1,2) $\end{document}</tex-math></inline-formula>, we have infinitely many radial solutions for <inline-formula><tex-math id="M8">\begin{document}$ 2\leq N&lt;2\frac{6-q+2\sqrt{8-2q}}{(2-q)^2}+1 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M9">\begin{document}$ \lambda = \tilde \lambda $\end{document}</tex-math></inline-formula>. On the other hand, for <inline-formula><tex-math id="M10">\begin{document}$ N&gt;2\frac{6-q+2\sqrt{8-2q}}{(2-q)^2}+1 $\end{document}</tex-math></inline-formula> there exists a unique radial solution for <inline-formula><tex-math id="M11">\begin{document}$ 0&lt;\lambda&lt;\tilde \lambda $\end{document}</tex-math></inline-formula>.</p>


2005 ◽  
Vol 2005 (2) ◽  
pp. 95-104
Author(s):  
M. Ouanan ◽  
A. Touzani

We study the existence of nontrivial solutions for the problemΔu=u, in a bounded smooth domainΩ⊂ℝℕ, with a semilinear boundary condition given by∂u/∂ν=λu−W(x)g(u), on the boundary of the domain, whereWis a potential changing sign,ghas a superlinear growth condition, and the parameterλ∈]0,λ1];λ1is the first eigenvalue of the Steklov problem. The proofs are based on the variational and min-max methods.


Fractals ◽  
2020 ◽  
Vol 28 (03) ◽  
pp. 2050053
Author(s):  
XIAOFANG JIANG ◽  
QINGHUI LIU ◽  
GUIZHEN WANG ◽  
ZHIYING WEN

Let [Formula: see text] be the class of Moran sets with integer [Formula: see text] and real [Formula: see text] satisfying [Formula: see text]. It is well known that the Hausdorff dimension of any set in this class is [Formula: see text]. We show that for any [Formula: see text], [Formula: see text] where [Formula: see text] denotes [Formula: see text]-dimensional Hausdorff measure of [Formula: see text]. For any [Formula: see text] with [Formula: see text] there exists a self-similar set [Formula: see text] such that [Formula: see text].


Author(s):  
Zhijun Zhang

This paper is mainly concerned with the global asymptotic behaviour of the unique solution to a class of singular Dirichlet problems − Δu = b(x)g(u), u > 0, x ∈ Ω, u|∂Ω = 0, where Ω is a bounded smooth domain in ℝ n , g ∈ C1(0, ∞) is positive and decreasing in (0, ∞) with $\lim _{s\rightarrow 0^+}g(s)=\infty$ , b ∈ Cα(Ω) for some α ∈ (0, 1), which is positive in Ω, but may vanish or blow up on the boundary properly. Moreover, we reveal the asymptotic behaviour of such a solution when the parameters on b tend to the corresponding critical values.


Sign in / Sign up

Export Citation Format

Share Document