scholarly journals The Relationship Between Cerebral Blood Flow and the EEG in Normals

Author(s):  
Devidas Menon ◽  
Zoltan Koles ◽  
Allen Dobbs

SUMMARY:Using the Xel33 inhalation technique, measurements of the blood flow to the left and right parietal and temporal regions of the cerebrum were obtained in 5 healthy individuals while simultaneously recording their EEGs. Up to 3 measurements were obtained from each of the subjects the first while they were mentally at rest and the others while they were engaged in prescribed forms of mental activity. Relationships between the measured blood flow through grey matter, initial slope index, relative grey weight, percent grey flow and power in the delta, delta-theta, alpha, beta and gamma rhythms of the EEG were examined. The results showed that for the subject group as a whole there was a strong correlation between the power present in the low frequency components of EEG and the grey flow and relative grey weight parameters of blood flow. On an individual basis, the observed relationships were highly variable particularly at high flow rates and at low relative grey weights, but became much more definitive at low flows and high weights. The results as they relate to previous work of this kind are discussed.

2018 ◽  
Vol 315 (6) ◽  
pp. F1542-F1549 ◽  
Author(s):  
Janet D. Klein ◽  
Xiaonan H. Wang

Acupuncture with low-frequency electrical stimulation (Acu/LFES) can prevent muscle atrophy by increasing muscle protein anabolism in mouse models of chronic kidney disease. During the treatment of muscle wasting, we found that Acu/LFES on the gastrocnemius muscle of the leg enhances renal blood flow. We also found that Acu/LFES increases exosome abundance and alters exosome-associated microRNA expression in the circulation. When exosome secretion was blocked using GW4869, the Acu/LFES-induced increase in renal blood flow was limited. This provided evidence that the increased renal blood flow is exosome mediated. To identify how exosomes regulate renal blood flow, we performed microRNA deep sequencing in exosomes isolated from treated and untreated mouse serum and found that the 34 microRNAs are altered by Acu/LFES. In particular, miR-181d-5p is increased in the serum exosome of Acu/LFES-treated mice. In silico searching suggested that miR-181d-5p could target angiotensinogen. Using a luciferase reporter assay, we demonstrated that miR-181 directly inhibits angiotensinogen. When Acu/LFES-treated muscle was excised and incubated in culture medium, we found that the amount of exosomes and miR-181d-5p was increased in the medium providing evidence that Acu/LFES can increase miR-181 secretion. We conclude that Acu/LFES on leg hindlimb increases miR-181 in serum exosome leading to increased renal blood flow. This study provides important new insights about the mechanism(s) by which acupuncture may regulation of muscle-organ cross talk through exosome-derived microRNA.


1997 ◽  
Vol 273 (4) ◽  
pp. H1867-H1878 ◽  
Author(s):  
Luciano Bernardi ◽  
Daniel Hayoz ◽  
René Wenzel ◽  
Claudio Passino ◽  
Alessandro Calciati ◽  
...  

To determine whether skin blood flow is local or takes part in general regulatory mechanisms, we recorded laser-Doppler flowmetry (LDF; left and right index fingers), blood pressure, muscle sympathetic nerve activity (MSNA), R-R interval, and respiration in 10 healthy volunteers and 3 subjects after sympathectomy. We evaluated 1) the synchronism of LDF fluctuations in two index fingers, 2) the relationship with autonomically mediated fluctuations in other signals, and 3) the LDF ability to respond to arterial baroreflex stimulation (by neck suction at frequencies from 0.02 to 0.20 Hz), using spectral analysis (autoregressive uni- and bivariate, time-variant algorithms). Synchronous LDF fluctuations were observed in the index fingers of healthy subjects but not in sympathectomized patients. LDF fluctuations were coherent with those obtained for blood pressure, MSNA, and R-R interval. LDF fluctuations were leading blood pressure in the low-frequency (LF; 0.1 Hz) band and lagging in the respiratory, high-frequency (HF; ∼0.25 Hz) band, suggesting passive “downstream” transmission only for HF and “upstream” transmission for LF from the microvessels. LDF fluctuations were responsive to sinusoidal neck suction up to 0.1 Hz, indicating response to sympathetic modulation. Skin blood flow thus reflects modifications determined by autonomic activity, detectable by frequency analysis of spontaneous fluctuations.


2010 ◽  
Vol 139-141 ◽  
pp. 2502-2505
Author(s):  
Bing Cheng Wang ◽  
Zhao Hui Ren

Simulated four different fault signals in the lab, the authors then used wavelet scalogram and amplitude spectrum to make analysis on the above four fault signals and abstract each spectrum characteristics. Wavelet scalogram was able to extract the characteristic’s frequency, show the impact components caused by rub-impact, show the beat phenomenon caused by oil whip and show the irreducible high frequency components as well as the complex low-frequency components. Amplitude spectrum was able to show the energy size distribution at various frequency bands and able to analyze and calculate the relationship between various frequency components. Thus they express the relationship between various frequency banks from a quantitative manner. Therefore, combining the wavelet scalogram and amplitude spectrum when making analysis, as they complement and verify each other, it will enhance the reliability when extract and analyze the characteristics of fault signal.


2018 ◽  
Vol 37 (2) ◽  
pp. 373-384
Author(s):  
Hiroshi Sato ◽  
Jongkwan Ryu ◽  
Kenji Kurakata

An on-site system for measuring low-frequency noise and complainant's responses to the low-frequency noise was developed to confirm whether the complainant suffer from the environmental noise with low-frequency components. The system suggests several methods to find the dominant frequency and major sound pressure level spectrum of the noise causing annoyance. This method can also yield a quantified relationship (correlation coefficient and percentage of response to the noise) between physical noise properties and the complainant’s responses. The advantage of this system is that it can easily find the relationship between the complainant’s response to the acoustic event of the houses and the physical characteristics of the low-frequency noise, such as the time trends and frequency characteristics. This paper describes the developed system and provides an example of the measurement results.


1982 ◽  
Vol 116 ◽  
pp. 157-186 ◽  
Author(s):  
C. Knisely ◽  
D. Rockwell

Oscillations of a cavity shear layer, involving a downstream-travelling wave and associated vortex formation, its impingement upon the cavity corner, and upstream influence of this vortex-corner interaction are the subject of this experimental investigation.Spectral analysis of the downstream-travelling wave reveals low-frequency components having substantial amplitudes relative to that of the fundamental (instability) frequency component; using bicoherence analysis it is shown that the lowest-frequency component can interact with the fundamental either to reinforce itself or to produce an additional (weaker) low-frequency component. In both cases, all frequency components exhibit an overall phase difference of almost 2kπ(k = 1, 2,…) between separation and impingement. Furthermore, the low-frequency and fundamental components have approximately the same amplitude growth rates and phase speeds; this suggests that the instability wave is amplitude-modulated at the low frequency, as confirmed by the form of instantaneous velocity traces.At the downstream corner of the cavity, successive vortices, arising from the amplified instability wave, undergo organized variations in (transverse) impingement location, producing a low-frequency component(s) of corner pressure. The spectral content and instantaneous trace of this impingement pressure are consistent with those of velocity fluctuations near the (upstream) shear-layer separation edge, giving evidence of the strong upstream influence of the corner region.


Author(s):  
Б.И. Кузник ◽  
Ю.Н. Смоляков ◽  
Е.С. Гусева ◽  
С.О. Давыдов ◽  
И.В. Файн

Цель исследования - выявление взаимосвязи между показателями вариабельности сердечного ритма (ВСР), кровяным давлением и гемодинамическими функциями у женщин, страдающих гипертонической болезнью (ГБ) и находящихся на медикаментозной терапии (ГБ-1), либо в дополнение к этому, проходящих регулярные курсы кинезитерапии (ГБ-2). Методика. Наблюдения проведены на 72 женщинах, страдающих артериальной гипертензией II стадии. В группу ГБ-1 вошли 37 женщин с ГБ, находящихся на медикаментозной терапии, в группу ГБ-2 - 35 женщин с ГБ, которые, помимо медикаментозной терапии, регулярно проходили на протяжении 2-3 лет по 3-4 полуторамесячных курса кинезитерапии (управляемые умеренные физические нагрузки). Для изучения гемодинамики был использован датчик динамического рассеяния света (miniature Dynamic Light Scattering - mDLS) от Elfi-Tech (Rehovot, Israel), измеряющий сигналы, инициированные кожным кровотоком, и использующий методику разложения сигнала на частотные компоненты, связанные с разными гемодинамическими источниками. Из пульсовой компоненты mDLS сигнала извлекалась информация о вариабельности RR-интервалов и рассчитывались индикаторы вариабельности сердечного ритма. Введен показатель «гемодинамический индекс» (Hemodynamic Index - HI). Зависимость HI от скорости сдвига интерпретируется путем сопоставления каждой полосе частот определенной скорости сдвига (HI1 - низкочастотный, HI2 - промежуточный, HI3 - высокочастотный). Использованы следующие относительные (RHI, Relative Hemodynamic Index) и осцилляторные (OHI, Oscillatory Hemodynamic Indexes) гемодинамические индексы: нейрологический (NEUR), Майера (MAYER), дыхательный (RESP) и пульсовой (PULSE). ВСР показатели включали: HR (Heart Rate), PWR (Power) - общую мощность колебаний, LF (Low Frequency), HF (High Frequency), SDNN (Standard Deviation of the Normal-to-Normal), RMSSD (Root Mean Square of the Successive Differences), а также индексы: CVI (Cardiac Vagal Index) и CSI (Cardiac Sympathetic Index). Результаты. У женщин, находящихся исключительно на медикаментозной терапии (ГБ-1), выявляются отрицательные взаимосвязи LF и LF/HF с систолическим, средним и пульсовым давлением. При ГБ-2 проявляются отрицательные связи PWR, LF, HF с пульсовым давлением. При ГБ-1 обнаружены положительные взаимосвязи между HR и гемодинамическими индексами HI1, RHI2 и отрицательная взаимосвязь с RHI3, а также между RMSSD и RHI3 и между HF и HI1/HI3. У пациенток ГБ-2 обнаружена отрицательная корреляция SDNN и RHI1, а также PWR и RHI1; положительные взаимосвязи между PWR и HI2, HI3, RHI2, HF и RHI3 и LF/HF с HI1/HI3; отрицательные связи HF c HI1/HI3 и с RHI1, а также между LF/HF и RHI3, CSI и RHI3. У больных ГБ-1 имеются прямые связи между SDNN, PWR, LF, HF, CVI и NEUR_HI1, что свидетельствует о действии этих факторов на эндотелиальный кровоток (HI1). В группе ГБ-2 установлено наличие лишь положительных связей между LF, HF и NEUR_HI3. У больных ГБ-1 на уровень АД влияют все без исключения осцилляторные ритмы, которые могут оказывать как отрицательное (с MAYER_HI1, PULSE_HI2), так и положительное (MAYER_HI2, RESP_HI3) влияние. У больных ГБ-2 взаимосвязи АД с осцилляторными индексами не обнаружены. Заключение. Уменьшение в группе ГБ-2 по сравнению с больными группы ГБ-1 числа факторов, влияющих на АД и гемодинамику, носит более совершенный и благоприятный характер, что и обеспечивает более быструю и устойчивую нормализацию артериального давления. Aim. To study the relationship between heart rate variability (HRV), blood pressure and hemodynamic functions in women with essential hypertension (EH) receiving a drug therapy alone (EH-1) or in combination with regular courses of kinesitherapy (EH-2). Methods. The study included 72 women with EH. The EH-1 group consisted of 37 women with stage II arterial hypertension. The EH-2 group consisted of 35 women with stage II arterial hypertension who underwent 3-4 1.5-month courses of kinesitherapy (controlled moderate physical activity) on a regular basis for 2-3 years. Hemodynamics was studied with a miniature Dynamic Light Scattering (mDLS) sensor from Elfi-Tech (Rehovot, Israel), which measures signals initiated by the skin blood flow by decomposing the signal into frequency components associated with different hemodynamic sources. Information on the RR interval variability was extracted from the pulse component of mDLS signal, and indicators of heart rate variability were calculated. A Hemodynamic Index (HI) was introduced. The HI dependence on shear rate was interpreted by matching each frequency band with a specific shear rate (HI1, low-frequency; HI2, intermediate; HI3, high-frequency). The following relative (RHI, Relative Hemodynamic Index) and oscillatory (OHI, Oscillatory Hemodynamic Indexes) indexes were used: neurological (NEUR), Mayer (MAYER), respiratory (RESP), and pulse (PULSE) ones. The HRV indexes included HR (Heart Rate), PWR (Power, total oscillation power), LF (Low Frequency), HF (High Frequency), SDNN (Standard Deviation of the Normal-to-Normal), RMSSD (Root Mean Square of the Successive Differences). CVI (Cardiac Vagal Index), and CSI (Cardiac Sympathetic Index). Results. In women who were on drug therapy alone (EH-1), negative relationships were found for LF and LF/HF with systolic, mean and pulse pressure. For EH-2, PWR, LF, and HF negatively correlated with pulse pressure. For EH-1, HR positively correlated with the hemodynamic indices HI1 and RHI2 and negatively correlated with RHI3; RMSSD negatively correlated with RHI3; and HF negatively correlated with HI1/HI3. For patients with EH-2, negative correlations were observed for SDNN and RHI1, PWR and RHI1; positive correlations were found between PWR and HI2; HI3, RHI2, HF and RHI3; and between LF/HF and HI1/HI3. HF negatively correlated with HI1/HI3 and with RHI1. LF/HF negatively correlated with RHI3, and CSI negatively correlated with RHI3. In patients with EH-1, SDNN, PWR, LF, HF, CVI, and NEUR_HI1 were directly related, which indicated an effect of these factors on the endothelial blood flow (HI1). In the EH-2 group, only positive correlations were found between LF, HF, and NEUR_HI3. In EH-1 patients, all oscillatory rhythms influenced BP; this influence could be both negative (for MAYER_HI1, PULSE_HI2) and positive (for MAYER_HI2, RESP_HI3). In EH-2 patients, no relationship was found between blood pressure and oscillatory indices. Conclusion. The smaller number of factors influencing blood pressure and hemodynamics in the EH-2 group compared to the EH-1 group was more beneficial and favorable, which ensured faster and steadier normalization of blood pressure.


Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4942 ◽  
Author(s):  
Thanh-Vinh Nguyen ◽  
Masaaki Ichiki

The continuous measurements of vital signs (body temperature, blood pressure, pulse wave, and respiration rate) are important in many applications across various fields, including healthcare and sports. To realize such measurements, wearable devices that cause minimal discomfort to the wearers are highly desired. Accordingly, a device that can measure multiple vital signs simultaneously using a single sensing element is important in order to reduce the number of devices attached to the wearer’s body, thereby reducing user discomfort. Thus, in this study, we propose a device with a microelectromechanical systems (MEMS)-based pressure sensor that can simultaneously measure the blood pulse wave and respiration rate using only one sensing element. In particular, in the proposed device, a thin silicone tube, whose inner pressure can be measured via a piezoresistive cantilever, is attached to the nose pad of a pair of eyeglasses. On wearing the eyeglasses, the tube of sensor device is in contact with the area above the angular artery and nasal cavity of the subject, and thus, both pulse wave and breath of the subject cause the tube’s inner pressure to change. We experimentally show that it is possible to extract information related to pulse wave and respiration as the low-frequency and high-frequency components of the sensor signal, respectively.


1979 ◽  
Vol 31 (1) ◽  
pp. 95-102 ◽  
Author(s):  
M. W. van der Molen ◽  
P. J. G. Keuss

The effect of signal intensity upon reaction time (RT) was studied in three auditory RT tasks in which the signal was a tone of high or low frequency. Experiment I showed the well-known negative gradient with intensity of simple RT when the subject was instructed to ignore the frequency and give the same response to both tones. But when the subject had to discriminate the frequency in a choice RT task, the RT/intensity relationship appeared to be U-shaped. Experiment II showed that when the subject was required to make a response to one signal but withhold it for the other, a task which requires discrimination of the frequency of the tone but removes the necessity to choose between overt responses, no increase in RT at high intensities was obtained. The results indicate that it is the response choice stage rather than the stimulus encoding stage which is retarded at higher energy levels. Experiment I also demonstrated that visual and auditory leading signals have similar facilitating effects without affecting the RT/intensity relationships.


Sign in / Sign up

Export Citation Format

Share Document