scholarly journals Flow caused by a point sink in a fluid having a free surface

Author(s):  
Lawrence K. Forbes ◽  
Graeme C. Hocking

AbstractThe flow caused by a point sink immersed in an otherwise stationary fluid is investigated. Low Froude number solutions are sought, in which the flow is radially symmetric and possesses a stagnation point at the surface, directly above the sink. A small-Froude-number expansion is derived and compared with the results of a numerical solution to the fully nonlinear problem. It is found that solutions of this type exist for all Froude numbers less than some maximum value, at which a secondary circular stagnation line is formed at the surface. The nonlinear solutions are reasonably well predicted by the small-Froude-number expansion, except for Froude numbers close to this maximum.

Author(s):  
G. C. Hocking ◽  
L. K. Forbes

AbstractThe problem of withdrawing water through a line sink from a region containing an homogeneous fluid beneath a free surface is considered. Assuming steady, irrotational flow of an ideal fluid, solutions with low Froude number containing a stagnation point on the free surface above the sink are sought using a series substitution method. The solutions are shown to exist for a value of the Froude number up to a critical value of about 1.4. No solutions of this type are found for Froude numbers greater than this value.


Author(s):  
J.-M. Vanden-Broeck

AbstractWe consider a free-surface flow due to a source submerged in a fluid of infinite depth. It is assumed that there is a stagnation point on the free surface just above the source. The free-surface condition is linearized around the rigid-lid solution, and the resulting equations are solved numerically by a series truncation method with a nonuniform distribution of collocation points. Solutions are presented for various values of the Froude number. It is shown that for sufficiently large values of the Froude number, there is a train of waves on the free surface. The wavelength of these waves decreases as the distance from the source increases.


Author(s):  
Lawrence K. Forbes ◽  
Graeme C. Hocking ◽  
Graeme A. Chandler

AbstractWithdrawal flow through a point sink on the bottom of a fluid of finite depth is considered. The fluid is at rest at infinity, and a stagnation point is present at the free surface, directly above the point sink. Numerical solutions are computed by means of the method of fundamental solutions, and it is observed that flows of this type are apparently possible for Froude number less than about 1.5. Relationships to previous work are discussed.


2007 ◽  
Vol 576 ◽  
pp. 475-490 ◽  
Author(s):  
B. J. BINDER ◽  
J.-M. VANDEN-BROECK

Free surface potential flows past disturbances in a channel are considered. Three different types of disturbance are studied: (i) a submerged obstacle on the bottom of a channel; (ii) a pressure distribution on the free surface; and (iii) an obstruction in the free surface (e.g. a sluice gate or a flat plate). Surface tension is neglected, but gravity is included in the dynamic boundary condition. Fully nonlinear solutions are computed by boundary integral equation methods. In addition, weakly nonlinear solutions are derived. New solutions are found when several disturbances are present simultaneously. They are discovered through the weakly nonlinear analysis and confirmed by numerical computations for the fully nonlinear problem.


1989 ◽  
Vol 33 (03) ◽  
pp. 176-193
Author(s):  
A. J. Hermans ◽  
F. J. Brandsma

The wave pattern of a thick ship-like object with finite bow and stern angles 0 <β<π/2 is studied. The completely blunt form p = π/2 is excluded. It turns out that the wave pattern is strongly influenced by the nonlinear terms at the free surface. The wave pattern is determined by means of the ray method. The rays are generated mainly at the bow and the stern. A crucial step is the determination of the so-called excitation coefficients. They are constructed by means of an asymptotic evaluation of a distribution of "local"sources at the free surface. It is shown that for small angles β<< 1 the excitation coefficients are the same as the ones obtained by means of an asymptotic expansion for small values of the Froude number of the results of Michell's thin-ship theory. For increasing values of β, the excitation coefficients change asymptotically. The theory herein shows a continuous dependence, nevertheless. Similar changes are observed in the far-field wave pattern.


2014 ◽  
Vol 25 (5) ◽  
pp. 655-680 ◽  
Author(s):  
CHRISTOPHER J. LUSTRI ◽  
S. JONATHAN CHAPMAN

In the low-Froude number limit, free-surface gravity waves caused by flow past a submerged obstacle have amplitude that is exponentially small. Consequently, these cannot be represented using an asymptotic series expansion. Previous studies have considered linearized steady flow past a submerged source in infinite-depth fluids, in which exponential asymptotics were used to determine the behaviour of downstream longitudinal and transverse free-surface gravity waves. Here, unsteady flow past a submerged source in an infinite-depth fluid is investigated, with the free surface taken to be initially waveless. The source is taken to be weak, and the flow is linearized about the undisturbed solution. Exponential asymptotics are applied to determine the wave behaviour on the free surface in terms of the two-dimensional plan-view, in order to show how the free surface waves evolve over time and eventually tend to the steady solution.


The low-Froude-number approximation in free-surface hydrodynamics is singular, and leads to formal series in powers of the Froude number with zero radius of convergence. The properties of these divergent series are discussed for several types of two-dimensional flows. It is shown that the divergence is of ‘n!' or exponential-integral character. A potential or actual lack of uniqueness is discovered and discussed. The series are summed by use of suitable nonlinear iterative transformations, giving good accuracy even for moderately large Froude number. Converged ' solutions ’ are obtained in this way, which possess jump discontinuities on the free surface. These jumps can be explained and, in principle, removed, by consideration of appropriate choices for the branch cut of the limiting exponential-integral solution. For example, we provide here a solution for a continuous wave-like flow, behind a semi-infinite moving body.


1989 ◽  
Vol 209 ◽  
pp. 57-75 ◽  
Author(s):  
Mark A. Grosenbaugh ◽  
Ronald W. Yeung

Unsteady free-surface flow at the bow of a steadily moving, two-dimensional body is solved using a modified Eulerian-Lagrangian technique. Lagrangian marker particles are distributed on both the free surface and the far-field boundary. The flow field corresponding to an inviscid, double-body solution is used for the initial condition. Solutions are obtained over a range of Froude numbers for bodies of three different shapes: a vertical step, a faired profile, and a bulbous bow. A transition Froude number exists at which the bow wave begins to overturn and break. The value of the transition Froude number depends on the bow shape. A stagnation point is observed to be present below the free surface during the initial stage of the wave formation. For flows occurring above the transition Froude number, the stagnation point remains trapped below the free surface as the wave overturns. Below the transition Froude number, the stagnation point rises to the surface as the crest of the transient bow wave moves upstream and away from the body.


Sign in / Sign up

Export Citation Format

Share Document