Transmission Microscopy at Atomic Dimensions

Author(s):  
William Krakow

For the best transmission electron microscopes now available, the phase contrast mechanism must be used in the interpretation of the optical imaging process producing high resolution micrographs. In the following paragraphs, some techniques are discussed which minimize image degradation and yield improvements in resolution and/or contrast so that the information content in the image can be clearly displayed.

Author(s):  
A. G. Cullis ◽  
D. M. Maher

The study of specimen surface topography in transmission electron images requires, for example, the observation of thickness fringe displacements across crystalline samples or, in high resolution, the careful analysis of background phase contrast patterns. Alternatively, a surface may be replicated by shadowing using, for example, Pt/C and although this technique is capable of yielding extremely high topographical resolution, it is difficult to execute and often the original specimen is degraded during removal of the replica. In the present paper we describe the application of a technique which utilizes transmission microscopy and facilitates the study of fine surface features at high resolution. The technique involves the use of tilted illumination such that the main beam is partially obstructed by an axial objective aperture.


Author(s):  
Ronald Gronsky

Due to the exceptional performance of most modern commercial transmission electron microscopes, the achievement of phase-contrast imaging resolution in the sub-2Å range is today a routine exercise, provided the samples are compliant. Nonetheless, there remains room for improvement, and the purpose of this manuscript is to highlight procedures that might be employed by the practicing microscopist for advancing conventional high resolution electron microscopy.


Author(s):  
Terrence Reilly ◽  
Al Pelillo ◽  
Barbara Miner

The use of transmission electron microscopes (TEM) has proven to be very valuable in the observation of semiconductor devices. The need for high resolution imaging becomes more important as the devices become smaller and more complex. However, the sample preparation for TEM observation of semiconductor devices have generally proven to be complex and time consuming. The use of ion milling machines usually require a certain degree of expertise and allow a very limited viewing area. Recently, the use of an ultra high resolution "immersion lens" cold cathode field emission scanning electron microscope (CFESEM) has proven to be very useful in the observation of semiconductor devices. Particularly at low accelerating voltages where compositional contrast is increased. The Hitachi S-900 has provided comparable resolution to a 300kV TEM on semiconductor cross sections. Using the CFESEM to supplement work currently being done with high voltage TEMs provides many advantages: sample preparation time is greatly reduced and the observation area has also been increased to 7mm. The larger viewing area provides the operator a much greater area to search for a particular feature of interest. More samples can be imaged on the CFESEM, leaving the TEM for analyses requiring diffraction work and/or detecting the nature of the crystallinity.


Author(s):  
Jan-Olov Bovin ◽  
Osamu Terasaki ◽  
Jan-Olle Malm ◽  
Sven Lidin ◽  
Sten Andersson

High resolution transmission electron microscopy (HRTEM) is playing an important role in identifying the new icosahedral phases. The selected area diffraction patterns of quasi crystals, recorded with an aperture of the radius of many thousands of Ångströms, consist of dense arrays of well defined sharp spots with five fold dilatation symmetry which makes the interpretation of the diffraction process and the resulting images different from those invoked for usual crystals. The atomic structure of the quasi crystals is not established even if several models are proposed. The correct structure model must of course explain the electron diffraction patterns with 5-, 3- and 2-fold symmetry for the phases but it is also important that the HRTEM images of the alloys match the computer simulated images from the model. We have studied quasi crystals of the alloy Al65Cu20Fe15. The electron microscopes used to obtain high resolution electro micrographs and electron diffraction patterns (EDP) were a (S)TEM JEM-2000FX equipped with EDS and PEELS showing a structural resolution of 2.7 Å and a IVEM JEM-4000EX with a UHP40 high resolution pole piece operated at 400 kV and with a structural resolution of 1.6 Å. This microscope is used with a Gatan 622 TV system with an image intensifier, coupled to a YAG screen. It was found that the crystals of the quasi crystalline materials here investigated were more sensitive to beam damage using 400 kV as electron accelerating voltage than when using 200 kV. Low dose techniques were therefore applied to avoid damage of the structure.


2011 ◽  
Vol 19 (3) ◽  
pp. 10-14 ◽  
Author(s):  
Joerg R. Jinschek ◽  
Emrah Yucelen ◽  
Bert Freitag ◽  
Hector A. Calderon ◽  
Andy Steinbach

In his now-famous 1959 speech on nanotechnology, Richard Feynman proposed that it should be possible to see the individual atoms in a material, if only the electron microscope could be made 100 times better. With the development of aberration correctors on transmission electron microscopes (TEMs) over the last decade, this dream of microscopists to directly image structures atom-by-atom has come close to an everyday reality. Figure 1 shows such a high-resolution transmission electron microscope (HR-TEM) image of a single-wall carbon nanotube obtained with an aberration-corrected TEM. Now that atomic-resolution images have become possible with aberration-corrector technology in both TEM and STEM, we can ask ourselves if we truly have achieved the goal of seeing individual atoms. Most aberration-corrected images exhibiting atomic resolution are not distinguishing individual atoms, but columns of a small number of atoms, so despite this remarkable achievement, there is still “plenty of room at the bottom” in order to move toward seeing, counting, and quantifying individual atoms. In fact, there never has been a more exciting time for electron microscopists.


2018 ◽  
Vol 941 ◽  
pp. 1613-1617 ◽  
Author(s):  
Li Jun Peng ◽  
Xu Jun Mi ◽  
Hao Feng Xie ◽  
Yang Yu ◽  
Guo Jie Huang ◽  
...  

The Cr precipitation sequence in Cu-Cr-Zr-Ag alloy during the aging process at 450°C could be obtained by Transmission electron microscopy (TEM) and High-resolution transmission microscopy (HRTEM) in the study. The strengthening curve shows a unimodal type and the tensile strength trends to peak when the aged for 4h. The Cr phase transformation of Cu-Cr-Zr-Ag aged at 450°C is supersaturated solid sloution→G.P zones→fcc Cr phase→order fcc Cr phase→bcc Cr phase. The orientation relationship between bcc Cr precipitates and the matrix change from cube-on-cube to NW-OR.


2001 ◽  
Vol 7 (S2) ◽  
pp. 288-289
Author(s):  
C. Kisielowski ◽  
J.M. Plitzko ◽  
S. Lartigue ◽  
T. Radetic ◽  
U. Dahmen

Recent progress in High Resolution Transmission Electron Microscopy makes it possible to investigate crystalline materials by phase contrast microscopy with a resolution close to the 80 pm information limit of a 300 kV field emission microscope'"". A reconstruction of the electron exit wave from a focal series of lattice images converts the recorded information into interpretable resolution. The present contribution illustrates some recent applications of this technique to interfaces.Fig. 1 shows a reconstructed electron exit wave of a heterophase interface between GaN and sapphire. The experiment takes advantage of three factors: First, we resolved the GaN lattice in projection, which requires at least 0.15 nm resolution. The projection eliminates the stacking fault contrast that usually obscures lattice images in the commonly recorded projection. Thus, image interpretation is drastically simplified. Second, all atom columns at the interface and in the sapphire are resolvable with a smallest projected aluminum - oxygen spacing of 85 pm in the sapphire.


2021 ◽  
Author(s):  
Akhil Kallepalli ◽  
Daan Stellinga ◽  
Ming-Jie Sun ◽  
Richard Bowman ◽  
Enzo Rotunno ◽  
...  

Abstract Transmission electron microscopes (TEM) achieve high resolution imaging by raster scanning a focused beam of electrons over the sample and measuring the transmission to form an image. While a TEM can achieve a much higher resolution than optical microscopes, they face challenges of damage to samples during the high energy processes involved. Here, we explore the possibility of applying computational ghost imaging techniques adapted from the optical regime to reduce the total, required illumination intensity. The technological lack of the equivalent high-resolution, optical spatial light modulator for electrons means that a different approach needs to be pursued. Using the optical equivalent, we show that a simple six-needle charged device to modulate the illuminating beam, alongside a novel reconstruction method to handle the resulting highly non-orthogonal patterns, is capable of producing images comparable in quality to a raster-scanned approach with much lower peak intensity.


Author(s):  
P. S. Ong ◽  
C. L. Gold

Transmission electron microscopes (TEM) have the capability of producing an electron spot (probe) with a diameter equal to its resolving power. Inclusion of the required scanning system and the appropriate detectors would therefore easily convert such an instrument into a high resolution scanning electron microscope (SEM). Such an instrument becomes increasingly useful in the transmission mode of operation since it allows the use of samples which are considered too thick for conventional TEM. SEM accessories now available are all based on the use of the prefield of the objective lens to focus the beam. The lens is operated either as a symmetrical Ruska lens or its asymmetrical version. In these approaches, the condensor system of the microscope forms part of the reducing optics and the final spot size is usually larger than 20Å.


Author(s):  
G. Benner ◽  
J. Frey ◽  
E. Weimer

This mode describes a modification of the spot scan mode1 in which areas on a photographic plate are exposed one after the other using small illuminating spots. The spot scan mode in transmission electron microscopes (TEM) reduces specimen damage and specimen drift. In addition to this it allows dynamic focussing at high tilt angles of the specimen.High-resolution, 3-D specimen reconstruction and reflection electron imaging using specimen tilt angles of up to 90° require dynamic focussing rectangular to the tilt axis of the goniometer for imaging of off-axis specimen areas. A slit-type illumination of the specimen parallel to the goniometer tilt axis may provide a better solution for such types of problems.


Sign in / Sign up

Export Citation Format

Share Document