Transmission electron microscope studies of a piliated strain of Haemophilus influenzae B

Author(s):  
Doris Palmer Booth

The role of pili as a mucosal attachment factor that enhances colonization and pathogenicity is well known in Escherichia coli, Neisseria gonorrhea, Streptococcus pyrogenes and Proteus mirabilis. Although Haemophilus influenzae type b (Hib) causes serious infections in children such as meningitis, pneumonia, septic arthritis and epiglottitis, very little information is available about Hib piliation and subsequent adhesion and colonization in vivo. Hib piliation was recently correlated with hemagglutination and adherence (in vitro) to human buccal epithelial cells by Pichichero, et al.Pili are protein structures which extend from the outer membrane of Hib. Purified pili have an apparent molecular weight of 23,000 daltons by Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and aggregate laterally as well as end on end to form thick filamentous structures. Although pili seem to enhance attachment to respiratory mucosa (a significant foothold during the invasion of healthy tissue) the relative pathogenicity of piliated and non-piliated Hib is yet to be determined.

1998 ◽  
Vol 66 (9) ◽  
pp. 4374-4381 ◽  
Author(s):  
John C. McMichael ◽  
Michael J. Fiske ◽  
Ross A. Fredenburg ◽  
Deb N. Chakravarti ◽  
Karl R. VanDerMeid ◽  
...  

ABSTRACT The UspA1 and UspA2 proteins of Moraxella catarrhalisare potential vaccine candidates for preventing disease caused by this organism. We have characterized both proteins and evaluated their vaccine potential using both in vitro and in vivo assays. Both proteins were purified from the O35E isolate by Triton X-100 extraction, followed by ion-exchange and hydroxyapatite chromatography. Analysis of the sequences of internal peptides, prepared by enzymatic and chemical cleavage of the proteins, revealed that UspA1 and UspA2 exhibited distinct structural differences but shared a common sequence including an epitope recognized by the monoclonal antibody 17C7. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), purified UspA1 exhibited a molecular weight of approximately 350,000 when unheated and a molecular weight of 100,000 after being heated for 10 min at 100°C. In contrast, purified UspA2 exhibited an apparent molecular weight of 240,000 by SDS-PAGE that did not change with the length of time of heating. Their sizes as determined by gel filtration were 1,150,000 and 830,000 for UspA1 and UspA2, respectively. Preliminary results indicate the proteins have separate functions in bacterial pathogenesis. Purified UspA1 was found to bind HEp-2 cells, and sera against UspA1, but not against UspA2, blocked binding of the O35E isolate to the HEp-2 cells. UspA1 also bound fibronectin and appears to have a role in bacterial attachment. Purified UspA2, however, did not bind fibronectin but had an affinity for vitronectin. Both proteins elicited bactericidal antibodies in mice to homologous and heterologous disease isolates. Finally, mice immunized with each of the proteins, followed by pulmonary challenge with either the homologous or a heterologous isolate, cleared the bacteria more rapidly than mock-immunized mice. These results suggest that UspA1 and UspA2 serve different virulence functions and that both are promising vaccine candidates.


1983 ◽  
Vol 59 (1) ◽  
pp. 81-103 ◽  
Author(s):  
R. Crossley ◽  
D.V. Holberton

Proteins from the axonemes and disc cytoskeleton of Giardia lamblia have been examined by sodium dodecyl sulphate/polyacrylamide gel electrophoresis. In addition to tubulin and the 30 X 10(3) molecular weight disc protein, at least 18 minor components copurify with the two major proteins in Triton-insoluble structures. The most prominent minor bands have the apparent molecular weights of 110 X 10(3), 95 X 10(3) and 81 X 10(3). Protein of 30 X 10(3) molecular weight accounts for about 20% of organelle protein on gels. In continuous 25 mM-Tris-glycine buffer it migrates mostly as a close-spaced doublet of polypeptides, which are here given the name giardins. Giardia tubulin and giardin have been purified by gel filtration chromatography in the presence of sodium dodecyl sulphate. Well-separated fractions were obtained that could be further characterized. Both proteins are heterogeneous when examined by isoelectric focusing. Five tubulin chains were detected by PAGE Blue 83 dye-binding after focusing in a broad-range ampholyte gel. Giardin is slightly less acidic than tubulin. On gels it splits into four major and four minor chains with isoelectric points in the pI range from 5.8 to 6.2. The amino acid composition of the giardin fraction has been determined, and compared to Giardia tubulin and a rat brain tubulin standard. Giardins are rich in helix-forming residues, particularly leucine. They have a low content of proline and glycine; therefore they may have extensive alpha-helical regions and be rod-shaped. As integral proteins of disc microribbons, giardins in vivo associate closely with tubulin. The properties of giardins indicate that in a number of respects - molecular size, charge, stoichiometry - their structural interaction with tubulin assemblies will be different from other tubulin-accessory protein copolymers studied in vitro.


Author(s):  
M Karunakaran ◽  
Vivek C Gajare ◽  
Ajoy Mandal ◽  
Mohan Mondal ◽  
S K Das ◽  
...  

This experiment was conducted to study the electrophoretic characters of heparin binding proteins (HBP) of Black Bengal buck semen and their correlation with sperm characters and cryo-survivability. Semen ejaculates (n=20/buck) were collected from nine bucks and in vitro sperm characters were evaluated at collection, after equilibration and after freeze - thawing. HBP were isolated through heparin column and discontinuous Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE) was performed to assess molecular weight. Significant difference (plessthan0.01) were observed among the bucks in sperm characters and freezability. Eight protein bands of 17 to 180 kDa in seminal plasma and 7 bands in sperm were found. 180 -136 kDa HBP of seminal plasma and 134-101 kDa HBP of sperm had showed high correlation with in vitro sperm characters. Further studies on identification of these proteins and their correlation with in vivo pregnancy are needed to find their role as marker for buck selection.


Blood ◽  
1991 ◽  
Vol 78 (9) ◽  
pp. 2283-2290 ◽  
Author(s):  
H Hoogendoorn ◽  
CH Toh ◽  
ME Nesheim ◽  
AR Giles

In previous studies using a nonhuman primate model of Protein C (PC) activation in vivo, immunoblotting showed substantial amounts of activated PC (APC) in a high molecular weight complex with what was presumed to be a previously unrecognized APC binding protein. This APC complex can also be formed in citrated plasma in vitro. It is of low electrophoretic mobility, sodium dodecyl sulfate (SDS) stable, with an apparent Mr of 320 Kd. Its purification from human plasma was accomplished using barium citrate adsorption, sequential polyethylene glycol (PEG) precipitations, diethylaminoethyl sepharose chromatography, AcA-34 gel filtration, and zinc-chelate affinity chromatography. This was monitored by subjecting the fractions to nondenaturing polyacrylamide gel electrophoresis (PAGE), transfer to polyvinylidene-difluoride membranes, and probing with 125I-labeled human APC. The purified APC-binding protein was homogeneous by SDS-PAGE with an Mr of 275 Kd. Its identity as alpha 2-macroglobulin (alpha 2M) was demonstrated immunochemically. Complex formation between alpha 2M and APC was found to be almost completely inhibited by EDTA, but to a lesser extent by citrate. Complex formation could also be prevented by active site inhibition with D-Phenylalanyl-L-Prolyl-L-Arginine- Chloromethyl Ketone (PPACK) or pretreatment of alpha 2M with methylamine. Incubation of APC (33 nmol/L) with alpha 2M (1 mumol/L) resulted in time-dependent inhibition of APC anticoagulant activity when measured using an activated partial thromboplastin time based APC assay. These data show that alpha 2M binds and inhibits APC in vitro and the interaction is both metal-ion and active-site dependent, requiring functionally intact alpha 2M. As the complexes formed in vitro comigrate electrophoretically with those observed in vivo after PC activation, it is suggested that alpha 2M is a physiologically relevant inhibitor involved in the processing of APC in vivo.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Ping Xiao ◽  
Hongzhi Huang ◽  
Xiang Li ◽  
Jianwei Chen ◽  
Jin-ao Duan

Abstract Background Radix isatidis (Isatis indigotica Fort.) is an ancient medicinal herb, which has been applied to the prevention and treatment of influenza virus since ancient times. In recent years, the antioxidant activity of Radix isatidis has been widely concerned by researchers. Our previous studies have shown that Radix isatidis protein (RIP) has good antioxidant activity in vitro. In this study, the composition of the protein was characterized and its antioxidant activity in vivo was evaluated. Methods The model of oxidative damage in mice was established by subcutaneous injection of D-galactose for 7 weeks. Commercially available kits were used to determine the content of protein and several oxidation indexes in different tissues of mice. The tissue samples were stained with hematoxylin and eosin (H&E) and the pathological changes were observed by optical microscope. The molecular weight of RIP was analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The amino acid composition of RIP was determined by a non-derivative method developed by our research group. Results RIP significantly increased the activities of antioxidant enzymes such as SOD, CAT, GSH-Px and total antioxidant capability (TAOC) but decreased the MDA level in the serum, kidney and liver. H&E stained sections of liver and kidney revealed D-galactose could cause serious injury and RIP could substantially attenuate the injury. The analysis of SDS-PAGE showed that four bands with molecular weights of 19.2 kDa, 21.5 kDa, 24.8 kDa and 40.0 kDa were the main protein components of RIP. Conclusions The results suggested that RIP had excellent antioxidant activity, which could be explored as a health-care product to retard aging and a good source of protein nutrition for human consumption.


1974 ◽  
Vol 140 (2) ◽  
pp. 157-167 ◽  
Author(s):  
Néstor F. González-Cadavid ◽  
Carmen Sáez De Córdova

The functional distinction of membrane-bound and free polyribosomes for the synthesis of exportable and non-exportable proteins respectively is not so strict as was initially thought, and it was therefore decided to investigate their relative contribution to the elaboration of an internal protein integrated into a cell structure. Cytochrome c was chosen as an example of a soluble mitochondrial protein, and the incorporation of [14C]leucine and δ-amino[14C]laevulinate into the molecule was studied by using different ribosomal preparations from regenerating rat liver. A new procedure was devised for the purification of cytochrome c, based on ion-exchange chromatography combined with sodium dodecyl sulphate–polyacrylamide-gel electrophoresis. In spite of cytochrome c being a non-exportable protein, the membrane-bound polyribosomes were at least as active as the free ribosomes in the synthesis in vitro of the apoprotein and the haem moiety. The detergent-treated ribosomes could also effect the synthesis of cytochrome c, although at a lower rate. Since in liver more than two-thirds of the ribosomes are bound to the endoplasmic-reticulum membranes, it is considered that in vivo they are responsible for the synthesis of most of the cytochrome c content of the cell. This suggests that in secretory tissues the endoplasmic reticulum plays a predominant role in mitochondrial biogenesis, although free ribosomes may participate in the partial turnover of some parts of the organelle. The hypothesis on the functional specialization of the different kinds of ribosomes was therefore modified to account for their parallel intervention in the synthesis of proteins associated with membranous structures.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Juanni Chen ◽  
Shili Li ◽  
Jinxiang Luo ◽  
Rongsheng Wang ◽  
Wei Ding

In this paper, the enhanced antibacterial activity of silver nanoparticles (AgNPs) against the phytopathogenic bacteriumRalstonia solanacearumafter stabilization using selected surfactants (SDS, SDBS, TX-100, and Tween 80) was examined, in comparison with silver ion. Tween 80 was found to be the most preferable stabilizer of AgNPs due to the beneficial synergistic effects of the AgNPs and surfactant. However, all the surfactants nearly had no effects on the antibacterial activity of Ag+.In vitro, Tween 80-stabilized AgNPs showed the highest bactericidal activity againstR. solanacearum. Further measurements using TEM, fluorescence microscopy, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed that though Ag+and Tween 80-Ag+induced high toxicity, Tween 80-stabilized AgNPs displayed most severe damage when in direct contact with cells, causing mechanistic injury to the cell membrane and strongly modifying and destructing the cellular proteins. Meanwhile,in vivo, the pot experiments data indicated that the control efficiency of Tween 80-stabilized AgNPs on tobacco bacterial wilt was 96.71%, 90.11%, and 84.21%, at 7 days, 14 days, and 21 days, respectively. Based on the results evidencing their advantageous low dosage requirements and strong antimicrobial activity, Tween 80-stabilized AgNPs are a promising antibacterial agent for use in alternative crop disease control approaches.


1996 ◽  
Vol 270 (5) ◽  
pp. L704-L713 ◽  
Author(s):  
V. R. Muzykantov ◽  
E. N. Atochina ◽  
A. Kuo ◽  
E. S. Barnathan ◽  
K. Notarfrancesco ◽  
...  

We investigated the fate of MAb 9B9, a monoclonal antibody to angiotensin-converting enzyme (ACE), which binds to endothelium both in vitro and in vivo. Using cultured human umbilical vein endothelial cells (HUVEC) and isolated perfused rat lungs (IPL), we demonstrated specific and saturable binding of 125I-labeled MAb 9B9 at 4 degrees C [affinity constant (Kd) = 20-50 nM, maximal number of binding sites (Bmax) = 1.5-3.0 x 10(5) sites/cell]. When 125I-MAb 9B9 was bound to HUVEC at 37 degrees C, only 40% of cell-associated radioactivity was acid elutable, suggesting antibody internalization. This was confirmed by finding that 1) the amount of MAb 9B9 uptake at 37 degrees C was higher than at 4 degrees C both in HUVEC and IPL; 2) binding of 125I-labeled streptavidin with HUVEC and IPL pretreated with biotinylated MAb 9B9 (b-MAb 9B9) was diminished in a temperature- and time-dependent fashion at 37 degrees C; and 3) b-MAb 9B9 bound to HUVEC at 37 degrees C was found intracellularly by ultrastructural analysis using streptavidin gold. Intracellular 125I-MAb 9B9 was found in microsomal fractions of lung homogenate from IPL and after intravenous (iv) injections in rats. Degradation of internalized MAb 9B9 was minimal, since > 90% of cell-associated 125I label remained precipitable by trichloracetic acid in HUVEC, IPL, and in vivo. Autoradiography of sodium dodecyl sulfate-polyacrylamide gel electrophoresis of lung homogenates made as late as several days after iv injections of 125I-MAb 9B9 in rats demonstrated a predominant band above 140 kDa. These data indicate that endothelial cells either in vitro or in vivo internalize the ACE ligand MAb 9B9 without significant intracellular degradation. Therefore MAb 9B9 may be useful for selective intracellular delivery of drugs to the pulmonary vascular endothelium after systemic administration.


Sign in / Sign up

Export Citation Format

Share Document