Ultrastructural effects of recombinant human hematopoietic stem cell factor on mast cells and basophils from human CD34+ pluripotent progenitor cells

Author(s):  
J.P. Goff ◽  
A. S. Kirshenbaum ◽  
J. P. Albert ◽  
S.W. Kessler ◽  
K. M. Zsebo ◽  
...  

Hematopoietic stem cell factor (SCF) is the product of Sl locus in the mouse and is the ligand for the protooncogene c-kit. The human homologue has recently been cloned and recombinant protein (rhSCF) expressed and purified to homogeneity. rhSCF is synergistic with human cytokines in promoting the proliferation and differentiation of human progenitor cells.Human mast cells and basophils have been shown to originate from human bone marrow-derived CD34+ pluripotent progenitor cells cultured in the presence of rhIL-3, and develop granule scroll patterns only when cocultured with mouse 3T3 fibroblasts. Mast cells, from CD34+ cells cultured over agarose surfaces, in the presence of rhIL-3 had granules that contained only homogeneously dense material. To determine the effect of rhSCF on the appearance of mast cells and basophils in culture, highly purified human CD34+ progenitor cells were grown in the presence of rhIL-3, rhSCF, or rhIL-3 in combination with rhSCF over agarose surfaces.

Stem Cells ◽  
2013 ◽  
Vol 31 (5) ◽  
pp. 882-894 ◽  
Author(s):  
Susan M. Cleveland ◽  
Stephen Smith ◽  
Rati Tripathi ◽  
Elizabeth M. Mathias ◽  
Charnise Goodings ◽  
...  

Blood ◽  
2021 ◽  
Author(s):  
Yuqing Yang ◽  
Andrew J Kueh ◽  
Zoe Grant ◽  
Waruni Abeysekera ◽  
Alexandra L Garnham ◽  
...  

The histone acetyltransferase HBO1 (MYST2, KAT7) is indispensable for postgastrulation development, histone H3 lysine 14 acetylation (H3K14Ac) and the expression of embryonic patterning genes. In this study, we report the role of HBO1 in regulating hematopoietic stem cell function in adult hematopoiesis. We used two complementary cre-recombinase transgenes to conditionally delete Hbo1 (Mx1-Cre and Rosa26-CreERT2). Hbo1 null mice became moribund due to hematopoietic failure with pancytopenia in the blood and bone marrow two to six weeks after Hbo1 deletion. Hbo1 deleted bone marrow cells failed to repopulate hemoablated recipients in competitive transplantation experiments. Hbo1 deletion caused a rapid loss of hematopoietic progenitors (HPCs). The numbers of lineage-restricted progenitors for the erythroid, myeloid, B-and T-cell lineages were reduced. Loss of HBO1 resulted in an abnormally high rate of recruitment of quiescent hematopoietic stem cells (HSCs) into the cell cycle. Cycling HSCs produced progenitors at the expense of self-renewal, which led to the exhaustion of the HSC pool. Mechanistically, genes important for HSC functions were downregulated in HSC-enriched cell populations after Hbo1 deletion, including genes essential for HSC quiescence and self-renewal, such as Mpl, Tek(Tie-2), Gfi1b, Egr1, Tal1(Scl), Gata2, Erg, Pbx1, Meis1 and Hox9, as well as genes important for multipotent progenitor cells and lineage-specific progenitor cells, such as Gata1. HBO1 was required for H3K14Ac through the genome and particularly at gene loci required for HSC quiescence and self-renewal. Our data indicate that HBO1 promotes the expression of a transcription factor network essential for HSC maintenance and self-renewal in adult hematopoiesis.


Blood ◽  
1995 ◽  
Vol 86 (12) ◽  
pp. 4674-4680 ◽  
Author(s):  
P Mauch ◽  
C Lamont ◽  
TY Neben ◽  
C Quinto ◽  
SJ Goldman ◽  
...  

Peripheral blood stem cells and progenitor cells, collected during recovery from exposure to cytotoxic agents or after cytokine administration, are being increasingly used in clinical bone marrow transplantation. To determine factors important for mobilization of both primitive stem cells and progenitor cells to the blood, we studied the blood and splenic and marrow compartments of intact and splenectomized mice after administration of recombinant human interleukin-11 (rhlL-11), recombinant rat stem cell factor (rrSCF), and IL-11 + SCF. IL-11 administration increased the number of spleen colony- forming units (CFU-S) in both the spleen and blood, but did not increase blood long-term marrow-repopulating ability (LTRA) in intact or splenectomized mice. SCF administration increased the number of CFU- S in both the spleen and blood and did not increase the blood or splenic LTRA of intact mice, but did increase blood LTRA to normal marrow levels in splenectomized mice. The combination of lL-11 + SCF syngeristically enhanced mobilization of long-term marrow-repopulating cells from the marrow to the spleen of intact mice and from the marrow to the blood of splenectomized mice. These data, combined with those of prior studies showing granulocyte colony-stimulating factor mobilization of long-term marrow repopulating cells from the marrow to the blood of mice with intact spleens, suggest different cytokine- induced pathways for mobilization of primitive stem cells.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1346-1346
Author(s):  
Isabelle Petit ◽  
Prashant Kaul ◽  
Daniel J. Lerner ◽  
Shahin Rafii

Abstract Lsc is a Rho GTPase guanine nucleotide exchange factor (RhoGEF) that physically and functionally links G-protein coupled receptors (GPCR) to the monomeric GTPase RhoA in mature hematopoietic and other cells. Lsc−/− (LscKO) mice have a peripheral leukocytosis, abnormal neutrophil and B cell motility, and immune response deficiencies. Although Lsc is required for neutrophil homeostasis, its role in hematopoietic stem and progenitor cells is unknown. In this study, we have used LscKO mice to determine if Lsc is required for normal stem cell motility and mobilization. Initially, we used immunofluorescence labeling to demonstrate that hematopoietic stem and progenitor cells express Lsc. This suggested that Lsc may be required for normal hematopoietic stem and progenitor cell migration. Stromal-cell derived factor-1 (SDF-1) is a potent chemokine for hematopoietic stem cells and activates the CXCR4 GPCR. It has been reported that Lsc is not required for SDF-1-stimulated migration of mature murine T and B cells. However, using a bare-filter transwell assay, we found that while LscKO Sca-1+ cells and Sca-1+Lin- cells have normal spontaneous migration, they have significantly increased SDF-1-stimulated migration compared to their wild-type (WT) counterparts, 1.4 and 2.3 fold, respectively. We then demonstrated that adhesion of LscKO Sca-1+ cells to bone marrow (BM) stromal MS-5 cells was normal, indicating that impaired adhesion was not responsible for the abnormal SDF-1-stimulated migration. Using colony assay, we demonstrated that LscKO mice have a normal number of circulating peripheral stem and progenitor cells. Strikingly, after 5 days of G-CSF administration, LscKO mice have 1.6 fold and 2.3 fold the number of peripheral mature WBC and stem and progenitor cells (colony forming units), respectively, compared to WT mice. Recruitment of BM CXCR4+ pro-angiogenic stem and progenitor cells has been linked to enhanced tumor angiogenesis. Because LscKO BM cells had abnormal SDF-1-stimulated migration and mobilization, we hypothesized that Lsc might regulate tumor angiogenesis as well. To this end, we assessed tumor growth in LscKO mice by injecting congenic Lewis lung carcinoma cells subcutaneously into LscKO mice and WT controls. Preliminary experiments revealed that tumors were 3.3 times larger in the LscKO mice as compared to WT mice. Quantification of the tumor vessels with anti-CD31 staining demonstrated that the tumors in LscKO mice were 1.4 fold more vascularized than controls. In summary, our results demonstrate that the Rho GEF Lsc is essential for normal hematopoietic stem cell migration and mobilization. In addition, we propose that absence of Lsc facilitates tumor growth by promoting BM stem and progenitor cell recruitment to the neo-angiogenic vessels, possibly augmenting tumor vascularization.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1174-1174
Author(s):  
Taito Nishino ◽  
Atsushi Iwama

Abstract Abstract 1174 Ex vivo expansion of hematopoietic stem and progenitor cells (HSPCs) have recently been explored to optimize autologous and allogeneic HSPC transplantation and shown to be effective in the field of stem cell biology. However, to our knowledge, identification of culture conditions that allow HSPCs expansion and long-term hematopoietic reconstitution have remained incomplete, and clinical methods to expand human HSPCs have yet to be realized. In this study, we assumed that some small molecule compounds may preferentially activate signals that are required for optimal HSPC expansion and facilitate self-renewal of hematopoietic stem cells (HSCs). Thus, we evaluated the effects of several biologically active compounds on the ex vivo expansion of CD34+ hematopoietic stem and progenitor cells from human cord blood (hCB) and identified Garcinol, a plant-derived natural product as a novel modulator of HSPC proliferation. We cultured hCB CD34+ cells in serum-free medium supplemented with human thrombopoietin, human stem cell factor and Garcinol for 7 days and analyzed the cellular phenotype of the cultured cells by flow cytometry and colony assay. Although the total number of cells cultured with Garcinol was similar to those cultured without Garcinol, the cultures with Garcinol showed >2-fold increase in the number of CD34+CD38- hematopoietic stem and progenitor cells and contained 2-fold more high-proliferative-potential colony-forming cells (HPP-CFCs; >1mm in diameter) compared to control cultures. Correspondingly, SCID-repopulating cells (SRCs) were increased 2-fold during a 7-day culture with Garcinol compared to cultures without Garcinol. These findings suggest that Garcinol efficiently promotes the net expansion of HPSCs. To investigate the structure-activity relationship of Garcinol, we synthesized the chemical derivatives of Garcinol and evaluated the effect of Garcinol and its derivatives, Isogarcinol and O, O'-dimethylisogarcinol, on the proliferation of CD34+CD38- cells. Although Isogarcinol exhibited almost the same activity as Garcinol, O, O'-dimethyl isogarcinol was scarcely effective in the CD34+CD38- cell proliferation. Correspondingly, O, O'-dimethylisogarcinol had no effect on numbers of HPP-CFCs. These results indicate that dihydroxybenzoyl moiety is crucial for the positive effect of Gacinol on HSPCs.Garcinol has been reported to be a potent inhibitor of histone acetyltransferases (HAT). Thus, we estimated the HAT activity in cells treated with Garcinol and its derivatives. Garcinol and Isogarcinol inhibited HAT activity while O, O'-dimethylisogarcinol showed much less HAT inhibitory activity as compared to Garcinol and Isogarcinol, which suggested that HAT inhibitory activity of Garcinol is correlate with the expansion of HPSCs. We are now investigating gene expression profiling in cells cultured with Garcinol using DNA microarray analysis and Q-PCR. In conclusion, we have identified Garcinol, a plant-derived small-molecule compound, which exhibits inhibitory effect on HAT activity, as a novel stimulator of HSPC expansion. The results reported here indicate that Garcinol would be applied as a useful tool for the development of novel and efficient technologies for hematopoietic stem cell and gene therapies. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 36-36
Author(s):  
Mehrnaz Safaee Talkhoncheh ◽  
Fredrik Ek ◽  
Aurelie Baudet ◽  
Christine Karlsson ◽  
Roger Olsson ◽  
...  

Abstract Despite extensive studies over the last decades, little is known about the mechanisms governing human hematopoietic stem cell (HSC) fate decisions. In particular, it has been challenging to define culture conditions in which HSCs can be expanded for clinical benefit. Application of small molecule screening to modulate stem cells has emerged as a useful tool for identification of new compounds with ability to expand hematopoietic stem and progenitor cells (HSPCs). Such screens have mainly relied on the expression of CD34 as predictor of stem cell activity in cultured cells. However, CD34 defines a broad repertoire of progenitor cells and does not define stem cell function. We found that the long-term repopulation potential of cultured human HSPCs is exclusively contained within a discrete cell population co-expressing CD34 and CD90, while the vast majority of progenitor cells are found in the CD34+CD90- population. Tracking the CD34+ CD90+ population is therefore a sensitive and specific tool to predict stem cell activity in cultured hematopoietic cells and provides a good basis for a screen aimed at discovering modifiers of stem cell expansion. To search broadly for novel and potential modifiers of ex vivo HSCs expansion we next developed and optimized a small molecule screen in human cord blood (CB) derived CD34+ cells. We screened >500 small molecules from 8 different annotated chemical libraries for the phenotypic expansion of CD34+ CD90+ cells following a 6-day culture in serum-free medium supplemented with stem cell factor (SCF), thrombopoietin (TPO) and fms-like tyrosine kinase 3 ligand (FL). The numbers of CD34+ CD90+ cells for each molecule, tested at two different concentrations, was compared to DMSO treated controls. Following the initial screen, several candidate hits were selected and subjected to a dose response validation experiment from which we selected four top candidate molecules. Two of these molecules were histone deacetylase (HDAC) inhibitors, which recently have been reported to facilitate expansion of CB derived HSCs. One of the top candidates, Ciclopirox ethanolamine (CE), had previously not been implicated in HSC expansion. Ciclopirox ethanolamine is known as an antifungal agent and iron chelator. It has further been shown to suppress cancer cell survival through inhibition of Wnt/beta catenin signaling. We found that CB cells cultured with CE had a 4-fold increase in CD34+90+ cell number compared to DMSO treated controls following 6 days of culture. Interestingly, the total cell count was not different, suggesting a specific increase in CD34+ CD90+ cell number rather than an overall higher proliferation rate. When plated in methylcellulose, CE cultured cells generated increased numbers of myeloid colonies. Moreover, CE treated cells gave rise to multilineage colonies (CFU-GEMM) that could not be detected from the control cultures. To further test the functional capacity of cells cultured with CE, we transplanted cultured equivalents of 30,000 CB CD34+ cells (cultured with or without CE) into sub lethally irradiated NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice. Human hematopoietic reconstitution in peripheral blood was determined 16 weeks later. Mice transplanted with CE cultured cells showed higher human CD45 engraftment 16 weeks post transplant compared to control cells (33.2±6.7% vs 14.6±5% p=0.04). The engrafted cells contributed to both myeloid and lymphoid lineages. This shows that Ciclopirox ethanolamine enhances the long-term engraftment capacity of ex vivo cultured HSCs and suggests that it should be considered in stem cell expansion protocols, either alone or in combination with other molecules. We are currently addressing the basis for the increased stem cell activity mediated by Ciclopirox ethanolamine using parameters for differentiation, cell cycling and apoptosis. In addition, we are comparing Ciclopirox ethanolamine with other recently defined modifiers of HSC expansion. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document