STEM versus CTEM beam damage: paraffin single crystals

Author(s):  
S. J. Krause ◽  
L. F. Allard ◽  
W. C. Bigelow

Introduction Currently, the resolution of structural detail in conventional transmission electron microscopy (CTEM) of organic materials is limited by the electron beam damage suffered by the sample. It has recently been shown that the imaging modes now available in scanning transmission electron microscopy (STEM) provide the potential for improvements in resolution over CTEM methods. However, the effect of the sensitivity of an organic sample itself to beam damage has not been compared in STEM versus CTEM. In STEM each element of the sample area is briefly illuminated with a small diameter, high flux, scanning electron beam, whereas in CTEM the entire sample area is continuously illuminated with a large diameter, lower flux, static electron beam. Although it has been shown that the amount of sample damage in CTEM is independent of dose rate(2), the electron flux in STEM may range from 3 to 4 orders of magnitude greater than that in CTEM, with a possible influence on damage rate. Generally, the effects of beam size, high flux, and short dwell time of the scanning electron beam on sensitivity of the sample to damage in STEM are not known.

Author(s):  
Joseph J. Comer ◽  
Charles Bergeron ◽  
Lester F. Lowe

Using a Van De Graaff Accelerator thinned specimens were subjected to bombardment by 3 MeV N+ ions to fluences ranging from 4x1013 to 2x1016 ions/cm2. They were then examined by transmission electron microscopy and reflection electron diffraction using a 100 KV electron beam.At the lowest fluence of 4x1013 ions/cm2 diffraction patterns of the specimens contained Kikuchi lines which appeared somewhat broader and more diffuse than those obtained on unirradiated material. No damage could be detected by transmission electron microscopy in unannealed specimens. However, Dauphiné twinning was particularly pronounced after heating to 665°C for one hour and cooling to room temperature. The twins, seen in Fig. 1, were often less than .25 μm in size, smaller than those formed in unirradiated material and present in greater number. The results are in agreement with earlier observations on the effect of electron beam damage on Dauphiné twinning.


2017 ◽  
Vol 23 (S1) ◽  
pp. 1794-1795 ◽  
Author(s):  
Colin Ophus ◽  
Thomas Juffmann ◽  
Stewart A Koppell ◽  
Brannon B Klopfer ◽  
Robert Glaeser ◽  
...  

Author(s):  
Carl Nail

Abstract Elementally characterizing intermetallic compounds (IMCs) to identify phases has routinely required relatively expensive transmission electron microscopy (TEM) analysis. A study was done characterizing IMCs using less expensive energydispersive x-ray (EDX) spectroscopy tools to investigate it as a practical alternative to TEM. The study found that EDX line scanning can differentiate phases by tracking changes in count rate as the electron beam of a scanning electron microscope (SEM) passes from one phase to another.


Author(s):  
G. G. Shaw

The morphology and composition of the fiber-matrix interface can best be studied by transmission electron microscopy and electron diffraction. For some composites satisfactory samples can be prepared by electropolishing. For others such as aluminum alloy-boron composites ion erosion is necessary.When one wishes to examine a specimen with the electron beam perpendicular to the fiber, preparation is as follows: A 1/8 in. disk is cut from the sample with a cylindrical tool by spark machining. Thin slices, 5 mils thick, containing one row of fibers, are then, spark-machined from the disk. After spark machining, the slice is carefully polished with diamond paste until the row of fibers is exposed on each side, as shown in Figure 1.In the case where examination is desired with the electron beam parallel to the fiber, preparation is as follows: Experimental composites are usually 50 mils or less in thickness so an auxiliary holder is necessary during ion milling and for easy transfer to the electron microscope. This holder is pure aluminum sheet, 3 mils thick.


Author(s):  
Nakazo Watari ◽  
Yasuaki Hotta ◽  
Yoshio Mabuchi

It is very useful if we can observe the identical cell elements within the same sections by light microscopy (LM), transmission electron microscopy (TEM) and/or scanning electron microscopy (SEM) sequentially, because, the cell fine structure can not be indicated by LM, while the color is; on the other hand, the cell fine structure can be very easily observed by EM, although its color properties may not. However, there is one problem in that LM requires thick sections of over 1 μm, while EM needs very thin sections of under 100 nm. Recently, we have developed a new method to observe the same cell elements within the same plastic sections using both light and transmission (conventional or high-voltage) electron microscopes.In this paper, we have developed two new observation methods for the identical cell elements within the same sections, both plastic-embedded and paraffin-embedded, using light microscopy, transmission electron microscopy and/or scanning electron microscopy (Fig. 1).


Sign in / Sign up

Export Citation Format

Share Document