Digital x-ray mapping of catalyst particles

Author(s):  
C. E. Lyman

Formation of 2-dimensional dot maps of x-ray intensity from various elements in a flat polished section was an early application of the scanning beam electron probe microanalyzer. The spatial resolution of those early maps was the same as the microprobe itself, about lpm. These maps were usually scanned in an analogue fashion, and there was generally enough x-ray signal to produce maps with good peak-to-background ratios. For analysis of individual catalyst particles, a scanning transmission electron microscope (STEM) must be used to obtain the required spatial resolution. However, the x-ray signal level is usually low and is collected with an energy-dispersive spectrometer which has a lower peak-to-background ratio than the wavelength-dispersive spectrometer used in the microprobe. To produce suitable high magnification x-ray maps of catalyst particles digital beam techniques were employed.

Author(s):  
Ernest L. Hall ◽  
John B. Vander Sande

The scanning transmission electron microscope has afforded a dramatic improvement in the spatial resolution of X-ray microanalysis of thin specimens, allowing the investigation of extremely localized compositional variations in materials systems. In this paper, the results of high resolution composition profile analysis in several materials are presented. The materials were analyzed in a 100 kV field emission STEM manufactured by VG Microscopes, Ltd., and fitted with an energy dispersive X-ray spectrometer. The specimens were held in a double-tilt graphite cartridge which allowed X-ray detection in the tilt range 0°-20° about each axis. The vacuum in the specimen chamber was ∿ 2 x 10-9 torr during analysis. Electron probe spot sizes of 5-10 Å were used, corresponding to probe currents in the range of 10-10-10-9 amps.For a given specimen composition, the spatial resolution of X-ray microanalysis in thin specimens is a function of probe size, accelerating voltage, specimen atomic number, and thickness.


Author(s):  
Michael Beer ◽  
J. W. Wiggins ◽  
David Woodruff ◽  
Jon Zubin

A high resolution scanning transmission electron microscope of the type developed by A. V. Crewe is under construction in this laboratory. The basic design is completed and construction is under way with completion expected by the end of this year.The optical column of the microscope will consist of a field emission electron source, an accelerating lens, condenser lens, objective lens, diffraction lens, an energy dispersive spectrometer, and three electron detectors. For any accelerating voltage the condenser lens function to provide a parallel beam at the entrance of the objective lens. The diffraction lens is weak and its current will be controlled by the objective lens current to give an electron diffraction pattern size which is independent of small changes in the objective lens current made to achieve focus at the specimen. The objective lens demagnifies the image of the field emission source so that its Gaussian size is small compared to the aberration limit.


Author(s):  
J. R. Michael ◽  
K. A. Taylor

Although copper is considered an incidental or trace element in many commercial steels, some grades contain up to 1-2 wt.% Cu for precipitation strengthening. Previous electron microscopy and atom-probe/field-ion microscopy (AP/FIM) studies indicate that the precipitation of copper from ferrite proceeds with the formation of Cu-rich bcc zones and the subsequent transformation of these zones to fcc copper particles. However, the similarity between the atomic scattering amplitudes for iron and copper and the small misfit between between Cu-rich particles and the ferrite matrix preclude the detection of small (<5 nm) Cu-rich particles by conventional transmission electron microscopy; such particles have been imaged directly only by FIM. Here results are presented whereby the Cu Kα x-ray signal was used in a dedicated scanning transmission electron microscope (STEM) to image small Cu-rich particles in a steel. The capability to detect these small particles is expected to be helpful in understanding the behavior of copper in steels during thermomechanical processing and heat treatment.


Author(s):  
M. Tamizifar ◽  
G. Cliff ◽  
R.W. Devenish ◽  
G.W. Lorimer

Small additions of copper, <1 wt%, have a pronounced effect on the ageing response of Al-Mg-Si alloys. The object of the present investigation was to study the effect of additions of copper up to 0.5 wt% on the ageing response of a series of Al-Mg-Si alloys and to use high resolution analytical electron microscopy to determine the composition of the age hardening precipitates.The composition of the alloys investigated is given in Table 1. The alloys were heat treated in an argon atmosphere for 30m, water quenched and immediately aged either at 180°C for 15 h or given a duplex treatment of 180°C for 15 h followed by 350°C for 2 h2. The double-ageing treatment was similar to that carried out by Dumolt et al. Analyses of the precipitation were carried out with a HB 501 Scanning Transmission Electron Microscope. X-ray peak integrals were converted into weight fractions using the ratio technique of Cliff and Lorimer.


Author(s):  
John B. Vander Sande ◽  
Thomas F. Kelly ◽  
Douglas Imeson

In the scanning transmission electron microscope (STEM) a fine probe of electrons is scanned across the thin specimen, or the probe is stationarily placed on a volume of interest, and various products of the electron-specimen interaction are then collected and used for image formation or microanalysis. The microanalysis modes usually employed in STEM include, but are not restricted to, energy dispersive X-ray analysis, electron energy loss spectroscopy, and microdiffraction.


2012 ◽  
Vol 706-709 ◽  
pp. 741-744 ◽  
Author(s):  
Akio Kira ◽  
Ryuichi Tomoshige ◽  
Kazuyuki Hokamoto ◽  
Masahiro Fujita

The various techniques of phase transformation of the material have been proposed by many researchers. We have developed several devices to generate the ultrahigh pressure by using high explosive. One of them uses metal jets. It is expected that the ultrahigh pressure occurs by the head-on collision between metal jets, because the velocity of the metal jet is very high. By mixing a powdered material with metal jets, the pressure of the material becomes high. The purpose of this study is to transform the phase of the powdered material by using this high pressure. The powders of the graphite and hBN were applied. The synthesis to the diamond and cBN was confirmed by X-ray diffraction (XRD). In this paper, the mechanism of the generation of the ultrahigh pressure is explained and the results of the observation of the powder by using scanning transmission electron microscope (STEM) are reported.


1989 ◽  
Vol 169 ◽  
Author(s):  
D. H. Shin ◽  
J. Silcox ◽  
S. E. Russek ◽  
D. K. Lathrop ◽  
R. A. Buhrman

AbstractGrain boundaries in thin films of high Tc YBa2Cu3O7-x superconductors have been investigated with high resolution scanning transmission electron microscope (STEM) imaging and nanoprobe energy dispersive x-ray (EDX) analysis. Atomic resolution images indicate that the grain boundaries are mostly clean, i.e., free of a boundary layer of different phase or of segregation, and are often coherent. EDX microanalysis with a 10 Å spatial resolution also indicates no composition deviation at the grain boundaries.


Sign in / Sign up

Export Citation Format

Share Document