Effects of Platelet-Activating Factor on Leukocyte Adhesion in the Guinea Pig Aorta

Author(s):  
Mary Kay Melden ◽  
Ronald G. Van Valen ◽  
Robert N. Saunders ◽  
Dean A. Handley

Platelet-activating factor (PAF) is a potent mediator of immune anaphylaxis. In a dose-dependent manner, PAF can induce such effects as thrombocytopenia, neutropenia, hypotension, bronchoconstriction, hemoconcentration, and negative inotropic cardiac effects. By intradermal or intravenous injection, PAF has been shown to induce blood vessel hyperpermeability resulting in extravasation of plasma, leukocyte adhesion and subsequent diapedesis. However, most studies of endothelial-leukocyte interactions have been limited to small vessels. We have examined the effects of PAF on endothelial structure and leukocyte involvement in the guinea pig aorta.

1996 ◽  
Vol 270 (3) ◽  
pp. L368-L375 ◽  
Author(s):  
C. M. Lilly ◽  
R. W. Chapman ◽  
S. J. Sehring ◽  
P. J. Mauser ◽  
R. W. Egan ◽  
...  

Administration of interleukin 5 (IL-5) to guinea pigs by tracheal injection was associated with increased recovery of eosinophils and neutrophils from bronchoalveolar lavage (BAL) fluid. The number of eosinophils recovered from BAL fluid increased in a dose-dependent manner from 9 +/- 2 X 10(3)/ml to a plateau of 143 +/- 29 X 10(3)/ml after the administration of recombinant human IL-5 (rhIL-5). Tracheal administration of recombinant guinea pig IL-5 (gpIL-5) also increased eosinophil recovery but was less potent than rhIL-5. Histological analysis confirmed the presence of inflammatory cells in the lung; there were higher grades of inflammation in airway than in parenchymal tissue after gpIL-5 administration. In addition, the histological grade of airway inflammation was greater 24 and 72 h after gpIL-5 administration than it was 6 days after administration. Airway hyperresponsiveness is reported to occur in guinea pigs exposed to rhIL-5 by intraperitoneal cellular production. It is surprising that airway infiltration with eosinophils induced by the topical application of IL-5 was not associated with hyperresponsiveness to substance P, histamine, or platelet-activating factor in intact animals or to methacholine in tracheally perfused lungs. Furthermore, the microvascular leakage induced by substance P was not altered by rhIL-5 administration. These findings indicate that the presence of eosinophils alone is not sufficient for the expression of airway hyperresponsiveness. Our ability to separate eosinophil recruitment and retention in the tissues from airway hyperresponsiveness indicates that these two processes are distinct and that the presence of eosinophils in lung tissue, by itself, is not sufficient to alter airway contractile responses.


1984 ◽  
Vol 52 (01) ◽  
pp. 034-036 ◽  
Author(s):  
Dean A Handley ◽  
Ronald G Van Valen ◽  
Mary Kay Melden ◽  
Robert N Saunders

SummaryPlatelet-activating factor (PAF) is a naturally occurring lipid that is reported to induce vessel hyperpermeability leading to loss of protein-rich plasma (extravasation). We have quantitated the systemic extravasation effects of synthetic PAF in the guinea pig by monitoring increases in hematocrit. When given intravenously (10-170 ng/kg), PAF produced dose-dependent increases in hematocrit, with maximal hemoconcentration developing in 5-7 min. In leukopenic animals the expected hematocrit increase was reduced by 57%. PAF given intra-arterially produced the dose-dependent changes in hematocrit similar to the intravenous effects of PAF. However, PAF given intraperitoneally (10-2500 μg/kg) was 800-1100-fold less effective than the other routes and hemoconcentration continued for 30-45 min until a maximal hematocrit was observed. These results show that PAF may markedly influence extravasation of plasma in a dose and route-dependent manner.


2019 ◽  
Vol 18 (1) ◽  
pp. 34-38
Author(s):  
Chen Lei ◽  
Pan Xiang ◽  
Shen Yonggang ◽  
Song Kai ◽  
Zhong Xingguo ◽  
...  

The aim of this study was to determine whether polydatin, a glucoside of resveratrol isolated from the root of Polygonum cuspidatum, warranted development as a potential therapeutic for ameliorating the pain originating from gallbladder spasm disorders and the underlying mechanisms. Guinea pig gallbladder smooth muscles were treated with polydatin and specific inhibitors to explore the mechanisms underpinning polydatin-induced relaxation of carbachol-precontracted guinea pig gallbladder. Our results shown that polydatin relaxed carbachol-induced contraction in a dose-dependent manner through the nitric oxide/cyclic guanosine monophosphate/protein kinase G and the cyclic adenosine monophosphate/protein kinase A signaling pathways as well as the myosin light chain kinase and potassium channels. Our findings suggested that there was value in further exploring the potential therapeutic use of polydatin in gallbladder spasm disorders.


1992 ◽  
Vol 1 (6) ◽  
pp. 375-377 ◽  
Author(s):  
Fang Jun ◽  
Zheng Qin Yue ◽  
Wang Hong Bin ◽  
Ju Dian Wen ◽  
Yi Yang Hua

Esculentoside A (EsA) is a saponin isolated from the roots of Phytolacca esculenta. Previous experiments showed that it had strong anti-inflammatory effects. Tumour necrosis factor (TNF) is an important inflammatory mediator. In order to study the mechanism of the anti-inflammatory effect of EsA, it was determined whether TNF production from macrophages was altered by EsA under lipopolysaccharide (LPS) stimulated conditions. EsA was found to decrease both extracellular and cell associated TNF production in a dose dependent manner at concentrations higher than 1 μmol/l EsA. Previous studies have showed that EsA reduced the releasing of platelet activating factor (PAF) from rat macrophages. The reducing effects of EsA on the release of TNF and PAF may explain its anti-inflammatory effect.


1990 ◽  
Vol 259 (1) ◽  
pp. H62-H67 ◽  
Author(s):  
J. P. Headrick ◽  
R. M. Berne

Effects of endothelial removal and hypoxia on responses to adenosine, 5'-(N-ethylcarboxamido)-adenosine (NECA), 2-chloroadenosine, N6-cyclohexyladenosine (CHA), sodium nitroprusside, and acetylcholine were examined in guinea pig aortic rings. Rings contracted with 2 microM prostaglandin F2 alpha (PGF2 alpha) relaxed in a dose-dependent manner in response to all drugs. The order of potency of adenosine compounds was NECA greater than 2-chloroadenosine greater than adenosine greater than CHA. Endothelial rubbing potentiated the PGF2 alpha response by 11 +/- 3%, eliminated the acetylcholine (ACh) response, but had no effect on nitroprusside and CHA responses. Responses to adenosine, NECA, and 2-chloroadenosine were significantly depressed by rubbing (P less than 0.05). Oxyhemoglobin (5 microM) and metyrapone (0.1 mM) reduced ACh responses in intact rings but had no effect on the adenosine and nitroprusside responses. Indomethacin treatment (10 microM) did not alter ACh, nitroprusside, or adenosine responses in intact rings. Hypoxia (10% O2) potentiated maximal responses to adenosine (+26 +/- 3%) and nitroprusside (+28 +/- 4%) in intact and rubbed rings and reduced the maximal response to ACh in intact rings (-28 +/- 3%). It is concluded that 1) adenosine mediates relaxation in guinea pig aorta by endothelial-dependent and -independent mechanisms, 2) receptors involved in both endothelial-dependent and -independent relaxations are characteristic of the A2 adenosine subtype, 3) the endothelial response appears unrelated to EDRF or prostanoid release, and 4) the adenosine response is significantly potentiated by hypoxia.


1994 ◽  
Vol 267 (4) ◽  
pp. G523-G528
Author(s):  
T. Takahashi ◽  
S. Kurosawa ◽  
C. Owyang

Carbachol (10(-8)-10(-3) M) produced two distinct biochemical responses in the guinea pig gallbladder smooth muscle: simulation of phosphoinositide (PI) hydrolysis and inhibition of forskolin-mediated adenosine 3',5'-cyclic monophosphate (cAMP) formation in a dose-dependent manner. The mean effective dose (ED50) concentration (1.6 x 10(-5) M) of carbachol-mediated stimulation of PI hydrolysis was 145 times greater than the ED50 concentration (1.1 x 10(-7) M) of carbachol mediated inhibition of cAMP formation. The inhibitory effect of carbachol on cAMP formation was antagonized by the pretreatment of pertussis toxin. To determine whether these two biochemical responses were mediated by the same or different subtypes of muscarinic receptors, the relative potencies of muscarinic receptor antagonists were calculated by Schild analysis. The M3 muscarinic antagonist 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP) exhibited inhibitory constant (Ki) values at 0.3 and 1.2 nM in antagonizing the stimulation of PI hydrolysis and the inhibition of cAMP formation, respectively. The corresponding Ki values for pirenzepine, a muscarinic M1 antagonist, were 11 and 130 nM. The corresponding Ki values for AF-DX 116, a muscarinic M2 antagonist, were 34 and 450 nM. Thus 4-DAMP was 37x and 108x more potent than pirenzepine in antagonizing the stimulation of PI hydrolysis and the inhibition of cAMP formation, respectively. In addition, compared with AF-DX 116, 4-DAMP was 113x and 375x more potent in reducing stimulation of PI hydrolysis and inhibition of cAMP formation. Cholecystokinin (CCK) octapeptide (10(-10)-(10-6) M) caused a significant increase of PI hydrolysis but had no inhibitory effects on cAMP formation evoked by forskolin (10(-5) M).(ABSTRACT TRUNCATED AT 250 WORDS)


1980 ◽  
Vol 186 (2) ◽  
pp. 499-505 ◽  
Author(s):  
M Lemon ◽  
P Methven ◽  
K Bhoola

Adenylate cyclase from the guinea-pig pancreas was activated in a dose-dependent manner by both secretin and cholecystokinin-pancreozymin, but in contrast with results in other species the hormones were approximately equipotent. All other hormones and transmitter substances tested were without any effect on adenylate cyclase activity. Guanylate cyclase activity was shown to have both particulate and supernatant components in the guinea-pig pancreas. The particulate enzyme, but not the supernatant enzyme, was markedly activated by Triton X-100, and most of the induced activity was released into the supernatant. The supernatant enzyme was specifically Mn2+-dependent, but, even though Mn2+ was maximally effective at a concentration of 3 mM, activity could be raised further by increasing Ca2+ concentration. The particulate enzyme, by contrast, was relatively Mn2+-independent. Activity of the particulate guanylate cyclase was enhanced by phosphatidylserine. The supernatant enzyme displayed classical Michaelis-Menten kinetics, but the particulate enzyme deviated markedly from such kinetics. Under none of the conditions used was any significant activation of guanylate cyclase observed with any of the secretogen hormones or transmitter substances.


Blood ◽  
2005 ◽  
Vol 106 (3) ◽  
pp. 1076-1083 ◽  
Author(s):  
Sandra Verploegen ◽  
Laurien Ulfman ◽  
Hanneke W. M. van Deutekom ◽  
Corneli van Aalst ◽  
Henk Honing ◽  
...  

AbstractActivation of granulocyte effector functions, such as induction of the respiratory burst and migration, are regulated by a variety of relatively ill-defined signaling pathways. Recently, we identified a novel Ca2+/calmodulin-dependent kinase I-like kinase, CKLiK, which exhibits restricted mRNA expression to human granulocytes. Using a novel antibody generated against the C-terminus of CKLiK, CKLiK was detected in CD34+-derived neutrophils and eosinophils, as well as in mature peripheral blood granulocytes. Activation of human granulocytes by N-formyl-methionyl-leucyl-phenylalanine (fMLP) and platelet-activating factor (PAF), but not the phorbol ester PMA (phorbol 12-myristate-13-acetate), resulted in induction of CKLiK activity, in parallel with a rise of intracellular Ca2+ [Ca2+]i. To study the functionality of CKLiK in human granulocytes, a cell-permeable CKLiK peptide inhibitor (CKLiK297-321) was generated which was able to inhibit kinase activity in a dose-dependent manner. The effect of this peptide was studied on specific granulocyte effector functions such as phagocytosis, respiratory burst, migration, and adhesion. Phagocytosis of Aspergillus fumigatus particles was reduced in the presence of CKLiK297-321 and fMLP-induced reactive oxygen species (ROS) production was potently inhibited by CKLiK297-321 in a dose-dependent manner. Furthermore, fMLP-induced neutrophil migration on albumin-coated surfaces was perturbed, as well as β2-integrin-mediated adhesion. These findings suggest a critical role for CKLiK in modulating chemoattractant-induced functional responses in human granulocytes.


1997 ◽  
Vol 136 (5) ◽  
pp. 531-538 ◽  
Author(s):  
Dessislava B Duridanova ◽  
Milena D Nedelcheva ◽  
Hristo S Gagov

Abstract To study the effects of oxytocin on both spontaneous phasic contractions and K+ outward currents (IK) of the so-called 'non-target' smooth muscle cells, physiological concentrations of oxytocin ranging between 10−12 mol/l and 10−8 mol/l were applied to smooth muscle preparations and single voltage-clamped cells isolated from the circular layer of the guinea-pig gastric antrum. Oxytocin (10−12mol/l to 10−8 mol/l) suppressed, in a dose-dependent manner, the tetrodotoxin- and atropine-resistant spontaneous phasic contractions and shifted rightward the dose–response curves of 10−7 mol/l charybdotoxin and 10−3mol/l BaCl2. In cells with preloaded intracellular Ca2+ stores, oxytocin (10−12 mol/l to 10−9 mol/l) caused a dose-dependent activation of the charybdotoxin-blockable non-inactivating component of IK (IK(s1)) of single voltage-clamped cells, which was accompanied by hyperpolarization of the cell membranes. 8Lys-vasopressin and 8arg-vasopressin failed to mimic the effects of oxytocin on both contraction and K+ currents. Further, the oxytocin-induced activation of IK(s1) was effectively antagonized by 5× 10−8 mol/l U-73122 or 5× 10−6 mol/l 2-nitro-4-carboxyphenyl N,N-diphenylcarbamate (inhibitors of the cell membrane phospholipase C), as well as by intracellularly applied heparin (selective inhibitor of inositol-1,4,5-trisphosphate (IP3)-induced Ca2+ release channels). In cells incubated in the absence of Ca2+ entry throughout the study, oxytocin (10−9 mol/l) caused a slight and transient increase of IK(s1) amplitudes. Neither ryanodine (10−6 mol/l nor cyclopiazonic acid (10−6 mol/l) were able to restore the IK-activating effect of oxytocin in these cells. The data obtained suggest (i) that selective oxytocin receptors are present on the membranes of guinea-pig antral smooth muscle cells, (ii) that the oxytocin-related relaxation may result from the activation of Ca2+-sensitive K+ conductivity via activation of IP3-induced release of Ca from the submembrane located cisternae of the sarcoplasmic reticulum Ca2+ stores and (iii) in turn, this evokes a non-inactivating component of IK, hyperpolarizing the cell membrane. European Journal of Endocrinology 136 531–538


1989 ◽  
Vol 35 (9) ◽  
pp. 1939-1941 ◽  
Author(s):  
A Matsuda ◽  
M Kimura ◽  
M Kataoka ◽  
S Ohkuma ◽  
M Sato ◽  
...  

Abstract To clarify whether manganese nutritional status is better reflected by the manganese concentration in lymphocytes or in whole blood, we injected manganese solutions intravenously into manganese-deficient rats and determined manganese concentrations in lymphocytes, whole blood, and various tissues. The manganese concentrations in lymphocytes and tissues, but not in whole blood, were significantly less in manganese-deficient rats than in normal rats. These low values could be prevented by intravenous injection of manganese in a dose-dependent manner. These results suggest that, for assessment of manganese nutritional status, measurement of manganese in lymphocytes is better than that in whole blood.


Sign in / Sign up

Export Citation Format

Share Document