Structures and defects identified by dark-field HREM

Author(s):  
J.P. Zhang

The tilted illumination dark field high resolution imaging technique was applied to structures and defects of semiconductors and superconductors. We used a Hitachi-H9000 top entry microscope with a high resolution pole-piece of Cs=0.9 mm, operated at 300 Kv. Proper apertures, tilting angle and imaging conditions were chosen to minimize the phase shift due to aberrations. Since the transmitted beam was moved outside the aperture, the noise ratio was greatly reduced, which resulted in a significant enhancement of image contrast and apparent resolution. Images are not difficult to interpret if they have a clear correspondence to structure - information from image simulations in bright field mode can be used to assist in dark field image interpretation.An example in a semiconductor, GaAs/Ga0.49In0.51P2 superlattice imaged along [110] direction is shown in Figure 1. In this dark field image the GaAs and GaInP layers can be easily distinguished by their different contrast, and the difference in quality between both sides of interfaces is clear. An enlarged image in Figure 1 shows the defective area on the rough side of interface. Since this image shows the same pattern as the [110] projection of an fee structure, the major structural information about {111}, {200}, {220} planes can be obtained from this zone. Note that in bright field mode, [110] is not a good zone for imaging such multilayers.

Author(s):  
D.W. Andrews ◽  
F.P. Ottensmeyer

Shadowing with heavy metals has been used for many years to enhance the topological features of biological macromolecular complexes. The three dimensional features present in directionaly shadowed specimens often simplifies interpretation of projection images provided by other techniques. One difficulty with the method is the relatively large amount of metal used to achieve sufficient contrast in bright field images. Thick shadow films are undesirable because they decrease resolution due to an increased tendency for microcrystalline aggregates to form, because decoration artefacts become more severe and increased cap thickness makes estimation of dimensions more uncertain.The large increase in contrast provided by the dark field mode of imaging allows the use of shadow replicas with a much lower average mass thickness. To form the images in Fig. 1, latex spheres of 0.087 μ average diameter were unidirectionally shadowed with platinum carbon (Pt-C) and a thin film of carbon was indirectly evaporated on the specimen as a support.


Author(s):  
John P. Langmore ◽  
Brian D. Athey

Although electron diffraction indicates better than 0.3nm preservation of biological structure in vitreous ice, the imaging of molecules in ice is limited by low contrast. Thus, low-dose images of frozen-hydrated molecules have significantly more noise than images of air-dried or negatively-stained molecules. We have addressed the question of the origins of this loss of contrast. One unavoidable effect is the reduction in scattering contrast between a molecule and the background. In effect, the difference in scattering power between a molecule and its background is 2-5 times less in a layer of ice than in vacuum or negative stain. A second, previously unrecognized, effect is the large, incoherent background of inelastic scattering from the ice. This background reduces both scattering and phase contrast by an additional factor of about 3, as shown in this paper. We have used energy filtration on the Zeiss EM902 in order to eliminate this second effect, and also increase scattering contrast in bright-field and dark-field.


Author(s):  
Joachim Frank

Cryo-electron microscopy combined with single-particle reconstruction techniques has allowed us to form a three-dimensional image of the Escherichia coli ribosome.In the interior, we observe strong density variations which may be attributed to the difference in scattering density between ribosomal RNA (rRNA) and protein. This identification can only be tentative, and lacks quantitation at this stage, because of the nature of image formation by bright field phase contrast. Apart from limiting the resolution, the contrast transfer function acts as a high-pass filter which produces edge enhancement effects that can explain at least part of the observed variations. As a step toward a more quantitative analysis, it is necessary to correct the transfer function in the low-spatial-frequency range. Unfortunately, it is in that range where Fourier components unrelated to elastic bright-field imaging are found, and a Wiener-filter type restoration would lead to incorrect results. Depending upon the thickness of the ice layer, a varying contribution to the Fourier components in the low-spatial-frequency range originates from an “inelastic dark field” image. The only prospect to obtain quantitatively interpretable images (i.e., which would allow discrimination between rRNA and protein by application of a density threshold set to the average RNA scattering density may therefore lie in the use of energy-filtering microscopes.


1984 ◽  
Vol 41 ◽  
Author(s):  
W. Krakow ◽  
J. T. Wetzel ◽  
D. A. Smith ◽  
G. Trafas

AbstractA high resolution electron microscope study of grain boundary structures in Au thin films has been undertaken from both a theoretical and experimental point of view. The criteria necessary to interpret images of tilt boundaries at the atomic level, which include electron optical and specimen effects, have been considered for both 200kV and the newer 400kV medium voltage microscopes. So far, the theoretical work has concentrated on two different [001] tilt bounda-ries where a resolution of 2.03Å is required to visualize bulk lattice structures on either side of the interface. Both a high angle boundary, (210) σ=5, and a low angle boundary, (910) σ=41, have been considered. Computational results using multislice dynamical diffraction and image simulations of relaxed bounda-ries viewed edge-on and with small amounts of beam and/or specimen inclina-tion have been obtained. It will be shown that some structural information concerning grain boundary dislocations can be observed at 200kV. However, many difficulties occur in the exact identification of the interface structure viewed experimentally for both [001] and [011] boundaries since the resolution required is near the performance limit of a 200kV microscope. The simulated results at 400kV indicate a considerable improvement will be realized in obtain-ing atomic structure information at the interface.


2004 ◽  
Vol 43 (48) ◽  
pp. 6745-6747 ◽  
Author(s):  
John Meurig Thomas ◽  
Paul A. Midgley ◽  
Timothy J. V. Yates ◽  
Jonathan S. Barnard ◽  
Robert Raja ◽  
...  

Author(s):  
William Krakow

Once it is understood in terms of wave optical transfer theory, tilted beam bright-field illumination can be applied to a variety of high resolution microscope problems which encompass lattice imaging and imaging nonperiodic objects. The tilted beam method offers the advantages of increasing the resolution and allowing both elastically and inelastically scattered electrons to contribute to high spatial frequency detail in a micrograph. In the simplest case, one can demonstrate these effects by the conventional lattice imaging mode using a single diffracted beam and the direct transmitted beam positioned symmetrically on either side of the microscope optic axis. However, the transfer theory of the microscope for tilted beam illumination shows that the cancellation of chromatic aberration occurs not only for the one diffraction direction across the optic axis from the unscattered beam, but also for an entire circle centered about the axis in the back focal plane (BFP) of the microscope.


Author(s):  
Marian Mankos ◽  
Shi Yao Wang ◽  
J.K. Weiss ◽  
J.M. Cowley

A novel detection system has been designed and realized experimentally on the HB5 STEM instrument. Shadow images, diffraction patterns as well as high-angle annular dark field and bright field images are observed simultaneously with high efficiency using CCD and TV cameras. The microscope can be operated in a wide range of instrument modes which includes the implementation of new techniques for high resolution imaging.As shown in Fig. 1, the detection system has three triple choice stages. Diffracted beams can be collected by three P47 fast phosphor annular detectors inclined at 45 degree to the axis and having different inner and outer acceptance angles, which can be adjusted by the postspecimen lenses. The detector is observed through a window by a photomultiplier. The annular detectors have been used also for a new bright field STEM technique which utilizes the inner rim of the detectors to collect only the outermost annular part of the central beam and promises an improvement in resolution by a factor of about 1.6. Initial results show some promise (Fig. 2). The transmitted beam is then converted into a light signal in YAG and P47 detectors; optionally the central part of the beam can be detected in the EELS spectrometer. The generated light signal is reflected through a system of mirrors, exits the vacuum chamber and is collected with high efficiency by high aperture optical lenses.


Author(s):  
T. Tomita ◽  
T. Honda ◽  
M. Kersker

Interpretation of the high resolution transmission image typically requires simulation since the contrast changes in a complicated way due to changes in focus and specimen thickness. The contrast in images formed by collecting high angle forward scattered electrons in STEM does not change with changes in thickness or defocus.Until recently, high angle annular dark field (HADF) images were obtained only from instruments using cold field emission guns. Recently we have attempted to obtain HADF images using Schottky (ZrO/W(100)) thermal field emission and using a 200kV instrument designed as a comprehensive TEM/STEM. Advantages of the ZrO/W emitter are easy operation, very good short and long term stability, high brightness, and narrow energy spread. This microscope, The JEM2010F with thermal field emission, allows subnanometer analysis with EDS(spot, line, and mapping), EELS, holograms, etc, and has a standard TEM imaging system for high resolution imaging and for various diffraction modes, viz., CBED, selected area, Tanaka, etc.


2004 ◽  
Vol 116 (48) ◽  
pp. 6913-6915 ◽  
Author(s):  
John Meurig Thomas ◽  
Paul A. Midgley ◽  
Timothy J. V. Yates ◽  
Jonathan S. Barnard ◽  
Robert Raja ◽  
...  

Author(s):  
J. M. Cowley

The resolution attained in an electron microscope image may be judged in a number of ways, depending on the means of interpretation used. The capabilities of available instruments are now approaching the point where a clear distinction between types of limitation of resolution and interpretive processes becomes important. Until recently the attainable resolution was limited by incoherent blurring of the image intensity by chromatic aberration effects due to electron energy spread and by electrical and mechanical instabilities of the microscope. Then the incoherent “spread function” defines the resolution, which may possibly be improved by ‘image deblurring’ by optical or computerized image processing. Now with the best microscopes the effects of the incoherent blurring can be reduced until the dominating effect in the limitation on resolution comes from coherent perturbations of the image due to defocus and spherical and other aberrations.


Sign in / Sign up

Export Citation Format

Share Document