Comprehensive multilayer film analysis with XPS, AES, and EDS

Author(s):  
N. C. Miller

Wavelength and energy dispersive x-ray spectroscopy (WDS and EDS) are routinely utilized to measure qualitatively and quantitatively the composition of microscopic features/phases of thickness 0.5 (μm or greater in solids. Surface spectroscopies, especially x-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES), are employed to determine surface chemistry and surface composition respectively of microscopic features 0.2-5 nm thick. The combined utilization of AES and EDS (or WDS) permits microanalysis of surface and subsurface features/phases. Two areas of improved analysis through combined utilization of AES and EDS are imaging/elemental mapping and measurement of vertical diffusion profiles. Strengths of XPS in complementing EDS/WDS will also be discussed.High resolution surface elemental or chemical mapping can be carried out with scanning Auger or secondary ion mass spectrometry (SIMS) microanalysis, respectively. In fact, both offer improved spacial resolution over WDS and EDS elemental x-ray dot mapping. Using sample rotation while removing material by ion beam sputter etching, three dimensional mapping can be carried out by either surface analysis technique, permitting microanalysis of buried features even in complex heterostructures.

Author(s):  
T. Yaguchi ◽  
M. Konno ◽  
T. Kamino ◽  
M. Ogasawara ◽  
K. Kaji ◽  
...  

Abstract A technique for preparation of a pillar shaped sample and its multi-directional observation of the sample using a focused ion beam (FIB) / scanning transmission electron microscopy (STEM) system has been developed. The system employs an FIB/STEM compatible sample rotation holder with a specially designed rotation mechanism, which allows the sample to be rotated 360 degrees [1-3]. This technique was used for the three dimensional (3D) elemental mapping of a contact plug of a Si device in 90 nm technology. A specimen containing a contact plug was shaped to a pillar sample with a cross section of 200 nm x 200 nm and a 5 um length. Elemental analysis was performed with a 200 kV HD-2300 STEM equipped with the EDAX genesis Energy dispersive X-ray spectroscopy (EDX) system. Spectrum imaging combined with multivariate statistical analysis (MSA) [4, 5] was used to enhance the weak X-ray signals of the doped area, which contain a low concentration of As-K. The distributions of elements, especially the dopant As, were successfully enhanced by MSA. The elemental maps were .. reconstructed from the maps.


1986 ◽  
Vol 68 ◽  
Author(s):  
John J. Pouch ◽  
Samuel A. Alterovitz ◽  
Joseph D. Warner

AbstractThe amorphous dielectrics a-C:H and BN were deposited on III–V semiconductors.Optical band gaps as high as 3 eV were measured for a-C:H generated by C4 H10 plasmas; a comparison was made with bad gaps obtained from films prepared by CH4 glow discharges.The ion beam deposited BN films exhibited amorphous behavior with band gaps on the order of 5 eV.Film compositions were studied by Auger electron spectroscopy (AES), x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS).The optical properties were characterized by ellipsometry, UV/VIS absorptiofr, and IR reflection and transmission.Etching rates of a-C:H subjected to O2 discharges were determined.


1995 ◽  
Vol 10 (12) ◽  
pp. 3079-3083 ◽  
Author(s):  
K.G. Kreider ◽  
M.J. Tarlov ◽  
G.J. Gillen ◽  
G.E. Poirier ◽  
L.H. Robins ◽  
...  

The recent announcement of the synthesis of C3N4 has increased interest in this unique material. Carbon nitride may have several useful applications as wear and corrosion resistant coatings, electrical insulators, and optical coatings. We have produced amorphous carbon nitride coatings containing up to 40% nitrogen using planar magnetron RF sputtering with and without an ion beam in a nitrogen atmosphere. Both wavelength dispersive x-ray spectrometry (WDX) and x-ray photoelectron spectroscopy (XPS) indicate this composition. Coatings up to 2 μm thick were produced on alumina, silicon, SiO2, and glass substrates using a graphite target. Films with transparency greater than 95% in the visible wavelengths and harder than silicon have been produced. The properties of these films are correlated with composition, fabrication, conditions, and subsequent heat treatments. A scanning tunneling microscope (STM) and transmission electron microscopy (TEM) were used to characterize the morphology of the films. XPS studies confirm the stability of a carbon nitrogen phase up to 600 °C. Compositional variations were determined with secondary ion mass spectrometry (SIMS) depth profiling, and the Raman spectra are compared with those of carbon and carbon nitride films prepared by other methods.


2020 ◽  
Author(s):  
Jennifer A. Rudd ◽  
Ewa Kazimierska ◽  
Louise B. Hamdy ◽  
Odin Bain ◽  
Sunyhik Ahn ◽  
...  

The utilization of carbon dioxide is a major incentive for the growing field of carbon capture. Carbon dioxide could be an abundant building block to generate higher value products. Herein, we describe the use of porous copper electrodes to catalyze the reduction of carbon dioxide into higher value products such as ethylene, ethanol and, notably, propanol. For <i>n</i>-propanol production, faradaic efficiencies reach 4.93% at -0.83 V <i>vs</i> RHE, with a geometric partial current density of -1.85 mA/cm<sup>2</sup>. We have documented the performance of the catalyst in both pristine and urea-modified foams pre- and post-electrolysis. Before electrolysis, the copper electrode consisted of a mixture of cuboctahedra and dendrites. After 35-minute electrolysis, the cuboctahedra and dendrites have undergone structural rearrangement. Changes in the interaction of urea with the catalyst surface have also been observed. These transformations were characterized <i>ex-situ</i> using scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. We found that alterations in the morphology, crystallinity, and surface composition of the catalyst led to the deactivation of the copper foams.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1173
Author(s):  
Fotini Martsouka ◽  
Konstantinos Papagiannopoulos ◽  
Sophia Hatziantoniou ◽  
Martin Barlog ◽  
Giorgos Lagiopoulos ◽  
...  

Six pharmaceutical pastes were prepared using chemically modified kaolin and talc powders. Tests were conducted to determine their structural and chemical characteristics as well as their antimicrobial protection, thus rendering them suitable for cosmetic and pharmaceutical uses. Kaolin and talc were treated chemically via the cation exchange method to load the clay particles with copper and zinc ions, two cations well known for their antimicrobial properties. Mineralogical analyses were conducted by using X-ray diffraction (XRD) before and after the modification, confirming the mineralogical purity of the samples. Scanning electron microscopy was also used in conjunction with energy dispersed spectroscopy (SEM-EDS) to obtain chemical mapping images, revealing the dispersion of the added metals upon the clay minerals surfaces. Moreover, chemical analysis has been performed (XRF) to validate the enrichment of the clays with each metal utilizing the cation exchange capacity. All modified samples showed the expected elevated concentration in copper or zinc in comparison to their unmodified versions. From the X-ray photoelectron spectroscopy (XPS), the chemical state of the samples’ surfaces was investigated, revealing the presence of salt compounds and indicating the oxidation state of adsorbed metals. Finally, the resistance of pastes in microbial growth when challenged with bacteria, molds, and yeasts was assessed. The evaluation is based on the European Pharmacopeia (EP) criteria.


Sign in / Sign up

Export Citation Format

Share Document