Image quality vs data obtainment in biological electron microscopy

Author(s):  
J. E. Johnson

In the early years of biological electron microscopy, scientists had their hands full attempting to describe the cellular microcosm that was suddenly before them on the fluorescent screen. Mitochondria, Golgi, endoplasmic reticulum, and other myriad organelles were being examined, micrographed, and documented in the literature. A major problem of that early period was the development of methods to cut sections thin enough to study under the electron beam. A microtome designed in 1943 moved the specimen toward a rotary “Cyclone” knife revolving at 12,500 RPM, or 1000 times as fast as an ordinary microtome. It was claimed that no embedding medium was necessary or that soft embedding media could be used. Collecting the sections thus cut sounded a little precarious: “The 0.1 micron sections cut with the high speed knife fly out at a tangent and are dispersed in the air. They may be collected... on... screens held near the knife“.

Author(s):  
M. A. Hayat

Potassium permanganate has been successfully employed to study membranous structures such as endoplasmic reticulum, Golgi, plastids, plasma membrane and myelin sheath. Since KMnO4 is a strong oxidizing agent, deposition of manganese or its oxides account for some of the observed contrast in the lipoprotein membranes, but a good deal of it is due to the removal of background proteins either by dehydration agents or by volatalization under the electron beam. Tissues fixed with KMnO4 exhibit somewhat granular structure because of the deposition of large clusters of stain molecules. The gross arrangement of membranes can also be modified. Since the aim of a good fixation technique is to preserve satisfactorily the cell as a whole and not the best preservation of only a small part of it, a combination of a mixture of glutaraldehyde and acrolein to obtain general preservation and KMnO4 to enhance contrast was employed to fix plant embryos, green algae and fungi.


Science ◽  
2020 ◽  
Vol 370 (6513) ◽  
pp. 223-226 ◽  
Author(s):  
Katerina Naydenova ◽  
Peipei Jia ◽  
Christopher J. Russo

Most information loss in cryogenic electron microscopy (cryo-EM) stems from particle movement during imaging, which remains poorly understood. We show that this movement is caused by buckling and subsequent deformation of the suspended ice, with a threshold that depends directly on the shape of the frozen water layer set by the support foil. We describe a specimen support design that eliminates buckling and reduces electron beam–induced particle movement to less than 1 angstrom. The design allows precise foil tracking during imaging with high-speed detectors, thereby lessening demands on cryostage precision and stability. It includes a maximal density of holes, which increases throughput in automated cryo-EM without degrading data quality. Movement-free imaging allows extrapolation to a three-dimensional map of the specimen at zero electron exposure, before the onset of radiation damage.


1961 ◽  
Vol 11 (3) ◽  
pp. 521-531 ◽  
Author(s):  
Frank A. Pepe ◽  
H. Finck

Glycerinated chicken muscle was stained with antimyosin antibody conjugated with mercury and fluorescein. The antibody was visualized in both the electron and the fluorescence microscope by using adjacent thin and thick sections. In order to make this possible, Araldite was used as the embedding medium. The mercury was reduced to metallic mercury in the electron beam and either migrated in the section or was sublimated in the vacuum. Therefore special techniques of carbon filming had to be used to prevent this. Some nonspecific staining occurred because of the binding of mercury to available sulfhydryl groups in the tissue. The available sulfhydryl groups were blocked by pretreating the tissue with iodoacetic acid and formaldehyde. The non-specific staining which occurred after this treatment was easily removed by brief washing with a buffered solution of thioglycolic acid.


1986 ◽  
Vol 80 ◽  
Author(s):  
Anjum Tauqir ◽  
Peter R. Strutt

AbstractElectron beam rapid solidification of molybdenum-base high speed steels results in quenched-in metastable phases containing a high concentration of alloying elements. Thermal reprocessing of such material by momentary interaction with the electron beam results in decomposition of martensite at a rate ≈ 100 times faster than that occurring during conventional thermal treatment. It is postulated that this arises from a high concentration of 'defect cluster nucleation sites' during the rapid up-quenching. The product of short thermal treatment is a dispersion of 2–5 nm very fine precipitates identified using transmission electron microscopy as MC type carbides.


Author(s):  
Oleg Bostanjoglo ◽  
Jochen Kornitzky

Material processing and synthesis is increasingly done by lasers. In order to apply this modern tool effectively, the laser-induced physical processes must be well known. As transmission electron microscopy is a powerful method to study the structure of the treated material, it seemed worthwhile to extend this technique for fast phase transitions, as are triggered by laser radiation. High-speed TEM may be realized either by pulsing the detector /l/ or the illuminating electron beam. The latter technique is more convenient and is described here.Fig. 1 shows a high-speed TEM designed for taking either double frame images (exposure/ repetition times ≿ 10 ns/≿ 50 ns) or streak images of transitions induced by a laser in the thin film specimen. It consists of a modified commercial TEM, an attached Q-switched (FWHM 50 ns), frequency-doubled (532 nm) Nd:YAG laser for treating the specimen, and electronics for electron beam pulsing and image storage. The TEM is equipped with focusing/deflecting optics for the laser radiation, an electron beam pulser generating either the exposure times for double frame pictures or the streak, and an image shifter. The image detector is a proximity focusing double stage MicroChannel Plate (MCP)/scintillator assembly. A CCD camera transfers the image to a PC-backed digitizing and frame grabbing card. The components are synchronized by a specially designed logic unit /2/.


Author(s):  
G. G. Shaw

The morphology and composition of the fiber-matrix interface can best be studied by transmission electron microscopy and electron diffraction. For some composites satisfactory samples can be prepared by electropolishing. For others such as aluminum alloy-boron composites ion erosion is necessary.When one wishes to examine a specimen with the electron beam perpendicular to the fiber, preparation is as follows: A 1/8 in. disk is cut from the sample with a cylindrical tool by spark machining. Thin slices, 5 mils thick, containing one row of fibers, are then, spark-machined from the disk. After spark machining, the slice is carefully polished with diamond paste until the row of fibers is exposed on each side, as shown in Figure 1.In the case where examination is desired with the electron beam parallel to the fiber, preparation is as follows: Experimental composites are usually 50 mils or less in thickness so an auxiliary holder is necessary during ion milling and for easy transfer to the electron microscope. This holder is pure aluminum sheet, 3 mils thick.


Author(s):  
J. A. Hugo ◽  
V. A. Phillips

A continuing problem in high resolution electron microscopy is that the level of detail visible to the microscopist while he is taking a picture is inferior to that obtainable by the microscope, readily readable on a photographic emulsion and visible in an enlargement made from the plate. Line resolutions, of 2Å or better are now achievable with top of the line 100kv microscopes. Taking the resolution of the human eye as 0.2mm, this indicates a need for a direct viewing magnification of at least one million. However, 0.2mm refers to optimum viewing conditions in daylight or the equivalent, and certainly does not apply to a (colored) image of low contrast and illumination level viewed on a fluorescent screen through a glass window by the dark-adapted eye. Experience indicates that an additional factor of 5 to 10 magnification is needed in order to view lattice images with line spacings of 2 to 4Å. Fortunately this is provided by the normal viewing telescope supplied with most electron microscopes.


Author(s):  
J. L. Farrant ◽  
J. D. McLean

For electron microscope techniques such as ferritin-labeled antibody staining it would be advantageous to have available a simple means of thin sectioning biological material without subjecting it to lipid solvents, impregnation with plastic monomers and their subsequent polymerization. With this aim in view we have re-examined the use of protein as an embedding medium. Gelatin which has been used in the past is not very satisfactory both because of its fibrous nature and the high temperature necessary to keep its solutions fluid. We have found that globular proteins such as the serum and egg albumins can be cross-linked so as to yield blocks which are suitable for ultrathin sectioning.


Author(s):  
R. A. Turner ◽  
A. E. Rodin ◽  
D. K. Roberts

There have been many reports which establish a relationship between the pineal and sexual structures, including gonadal hypertrophy after pinealectomy, and gonadal atrophy after injection of pineal homogenates or of melatonin. In order to further delineate this relationship the pineals from 5 groups of female rats were studied by electron microscopy:ControlsPregnant ratsAfter 4 weekly injections of 0.1 mg. estradiol benzoate.After 8 daily injections of 150 mcgm. melatonin (pineal hormone).After 8 daily injections of 3 mg. serotonin (melatonin precursor).No ultrastructural differences were evident between the control, and the pregnancy and melatonin groups. However, the estradiol injected animals exhibited a marked increase in the amount and size of rough endoplasmic reticulum within the pineal cells.


Sign in / Sign up

Export Citation Format

Share Document