Microvoid formation in the grain boundary phase of a sintered Si-Al-O-N ceramic after static fatigue testing

Author(s):  
M. R. Hughes ◽  
T. A. Nolan ◽  
J. Chang

Sintered silicon nitride materials are currently being considered for use in hot flow-path components of gas turbine engines because of their good thermal shock and oxidation resistance as well as strength at high temperatures. These materials, however, have been shown to be susceptible to slow crack growth (SCG) and creep at elevated temperatures. The high-temperature properties are largely determined by the intergranular phase which is composed of the sintering aid residue and may be either amorphous or crystalline depending on sintering and annealing parameters. The silicon nitride examined in this study had reportedly been sintered with Y2O3 (5.86%) and Al2O3 (2.2%) to produce a composite of β'Si3N4 crystals in an amorphous Y-Si-Al-O-N matrix. Static fatique tests performed on test bars of this material resulted in failures originating, via SCG and creep within the intergranular phase, above certain stress loads at 1000°C. These sites and other areas through the cross section of the test bars were examined by SEM and AEM to determine the microstructure and chemistry related to these failure phenomena.

Author(s):  
Nancy J. Tighe

Silicon nitride is one of the ceramic materials being considered for the components in gas turbine engines which will be exposed to temperatures of 1000 to 1400°C. Test specimens from hot-pressed billets exhibit flexural strengths of approximately 50 MN/m2 at 1000°C. However, the strength degrades rapidly to less than 20 MN/m2 at 1400°C. The strength degradition is attributed to subcritical crack growth phenomena evidenced by a stress rate dependence of the flexural strength and the stress intensity factor. This phenomena is termed slow crack growth and is associated with the onset of plastic deformation at the crack tip. Lange attributed the subcritical crack growth tb a glassy silicate grain boundary phase which decreased in viscosity with increased temperature and permitted a form of grain boundary sliding to occur.


1992 ◽  
Vol 287 ◽  
Author(s):  
W. Braue ◽  
G. D. Quinn

ABSTRACTThe static fatigue behavior of sintered Y2O3/A12O3-fluxed Si3N4 in air is controlled by slow crack growth or creep fracture. Partial devitrification of the amorphous grain boundary phase at 1000°C and 1100°C improves the static fatigue resistance with specimens surviving up to 1500 hrs. during stress rupture experiments. In this study the early stages of partial devitrification during static fatigue testing at 1000°C are investigated by conventional and analytical transmission electron microscopy with emphasis on nucleation and growth of δ-Y2Si2O7 and X1-Y2SiO5 and possible constraints from different stress states. The results show that the stress state does not affect the nature of the secondary phase assemblage. However, the amount of crystallization is higher within the tensile region of the flexural specimens than in areas which experienced compressive stresses.


Author(s):  
Eric P. Bouillon ◽  
Patrick C. Spriet ◽  
Georges Habarou ◽  
Thibault Arnold ◽  
Greg C. Ojard ◽  
...  

Advanced materials are targeting durability improvement in gas turbine engines. One general area of concern for durability is in the hot section components of the engine. Ceramic matrix composites offer improvements in durability at elevated temperatures with a corresponding reduction in weight for nozzles of gas turbine engines. Building on past material efforts, ceramic matrix composites using a carbon and a SiC fiber with a self-sealing matrix have been developed for gas turbine applications. Prior to ground engine testing, a reduced test matrix was undertaken to aggressively test the material in a long-term hold cycle at elevated temperatures and environments. This tensile low cycle fatigue testing was done in air and a 90% steam environment. After completion of the aggressive testing effort, six nozzle seals were fabricated and installed in an F100-PW-229 engine for accelerated mission testing. The C fiber CMC and the SiC Fiber CMC were respectively tested to 600 and 1000 hours in accelerated conditions without damage. Engine testing is continuing to gain additional time and insight with the objective of pursuing the next phase of field service evaluation. Mechanical testing and post-test characterization results of this testing will be presented. The results of the engine testing will be shown and overall conclusions drawn.


Author(s):  
Tania Bhatia ◽  
Venkat Vedula ◽  
Harry Eaton ◽  
Ellen Sun ◽  
John Holowczak ◽  
...  

Environmental barrier coatings (EBCs) are being developed for silicon carbide (SiC) based composites and monolithic silicon nitride (Si3N4) to protect against the accelerated oxidation and subsequent silica volatilization in high temperature, high-pressure steam environments encountered in gas turbine engines. While EBCs for silicon carbide (EBCSiC) have been demonstrated in combustor liner applications, efforts are ongoing in the development of EBC systems for silicon nitride (EBCSiN). The challenges of adapting EBCSiC to monolithic Si3N4 are discussed in this paper. Progress in the area of EBCSiN including development and performance during field tests and tests simulating engine conditions are reviewed.


Author(s):  
Tania Bhatia ◽  
G. V. Srinivasan ◽  
Sonia V. Tulyani ◽  
Robert A. Barth ◽  
Venkat R. Vedula ◽  
...  

Environmental barrier coatings (EBCs) are being developed for silicon carbide (SiC) based composites and monolithic silicon nitride (Si3N4) to protect against the accelerated oxidation and subsequent silica volatilization in high temperature high-pressure steam environments encountered in gas turbine engines. It has been found that the application of EBCs developed for SiC-based composites (EBCSiC) to monolithic silicon nitride results in a loss of room temperature mechanical strength of the monolithic substrate. In this paper, we discuss the development of a bond coat system tailored for monolithic silicon nitride that helps retain the strength of the substrate. Some of the unique requirements and challenges associated with the processing of non-line-of-sight EBCs for Si3N4 will also be discussed. Preliminary results from coating of airfoils will be presented.


Author(s):  
Michael J. L. Percival ◽  
Colin P. Beesley

Currently available Ceramic Matrix Composites (CMCs) have very low stress carrying capability if they are to achieve the service life required for application in gas turbine engines. As such, they are most likely to find their first applications in non-structural components with low mechanical loads, where the majority of the stress is thermally induced. The thermal cycling experienced in gas turbine engines, coupled with the necessary interfaces with surrounding metal components and other geometric features, means that these thermal stresses are often localised, but in order to produce a valid component design they may significantly exceed the maximum design stress. The aim of this paper is to discuss the implications for the life of the component of these excess stresses. This will cover the mechanisms for the propagation of localised damage in a strain controlled environment, and the effect of this damage on the thermal conductivity and hence on the induced thermal gradients and thermal strains. Strains corresponding to stresses considerably above the normally accepted design stress can be sustained for a considerable number of cycles, but the influence of extended time periods with damage at elevated temperatures remains unexplored.


Author(s):  
Sung R. Choi ◽  
D. Calvin Faucett ◽  
Brenna Skelley

An extensive experimental work for Pyroceram™ 9606 glass-ceramic was conducted to determine static fatigue at ambient temperature in distilled water. This work was an extension and companion of the previous work conducted in dynamic fatigue. Four different applied stresses ranging from 120 to 170 MPa was incorporated with a total of 20–23 test specimens used at each of four applied stresses. The slow crack growth parameters n and D were found to be n = 19 and D = 45 with a coefficient of correlation of rcoef = 0.9653. The Weibull modulus of time to failure was in a range of msf = 1.6 to 1.9 with an average of msf = 1.7±0.2. A life prediction using the previously-determined dynamic fatigue data was in excellent agreement with the static fatigue data. The life prediction approach was also applied to advanced monolithic ceramics and ceramic matrix composites based on their dynamic and static fatigue data determined at elevated temperatures. All of these results indicated that a SCG mechanism governed by a power-law crack-growth formulation was operative, a commonality of slow crack growth in these materials systems.


Author(s):  
J. A Sprague ◽  
G. R. Johnston

Hot stage components in many gas turbine engines require surface coatings to protect them from aggressive atmospheres at elevated temperatures. The most commonly employed protection scheme is to modify the surface composition of the components so that high temperature exposure in an oxidizing atmosphere will produce a dense, slow-growing, and adherent aluminum and/or chromium oxide film. Alloys of the MCrAlX-type, where M = Co, Ni, Fe, or combinations thereof, and X = a highly oxygen-active element such as Y, Hf, or Ce, are widely employed as overlay coatings in these applications. In the present investigation, several microanalytical techniques were applied to examine the mechanisms by which the microstructure and microchemistry of a CoCrAlY coating alloy affects the growth and adherence of protective oxide scales.Two cast alloy compositions were examined: Co-22Cr-llAl, and Co-22Cr-l1A1- 0.5Y (nominal compositions, wt. %). Selected specimens of the CoCrAl alloy were implanted with 2 × 1016 Y+/cm2 or 5 × 1016 Co+/cm2 at 150 keV.


Author(s):  
Sung R. Choi ◽  
D. Calvin Faucett ◽  
Brenna Skelley

An extensive experimental work for Pyroceram™ 9606 glass–ceramic was conducted to determine static fatigue at ambient temperature in distilled water. This work was an extension and companion of the previous work conducted in dynamic fatigue. Four different applied stresses ranging from 120 to 170 MPa was incorporated with a total of 20–23 test specimens used at each of four applied stresses. The slow crack growth (SCG) parameters n and D were found to be n = 19 and D = 45 with a coefficient of correlation of rcoef = 0.9653. The Weibull modulus of time to failure was in a range of msf = 1.6–1.9 with an average of msf = 1.7 ± 0.2. A life prediction using the previously determined dynamic fatigue data was in excellent agreement with the static fatigue data. The life prediction approach was also applied to advanced monolithic ceramics and ceramic matrix composites (CMCs) based on their dynamic and static fatigue data determined at elevated temperatures. All of these results indicated that a SCG mechanism governed by a power-law crack growth formulation was operative, a commonality of SCG in these materials systems.


Sign in / Sign up

Export Citation Format

Share Document