scholarly journals In-situ investigation of ion-implantation effects on radiation-induced segregation in Ni-Al alloys

Author(s):  
M.J. Giacobbe ◽  
N.Q. Lam ◽  
P.R. Okamoto ◽  
N.J. Zaluzec ◽  
J.F. Stubbins

In-situ experiments using the HVEM (high voltage electron microscope)/Tandem accelerator facility at Argonne National Laboratory were performed to determine the effects of 400-keV Zr+ and 75-keV Ne+ implantation on electron radiation-induced segregation (RIS) in Ni-9at.%Al at 550°C and 450°C, respectively. The alteration of RIS kinetics by Ne implantation was studied at two different doses. A highly-focused 900-keV electron beam, which produces a radial defect flux away from the beam center, was used to induce segregation of Al atoms in the opposite direction via the inverse-Kirkendall effect. Within the irradiated zone, Al enrichment drives the formation of γ′-Ni3Al precipitates, and the radial segregation rate of Al was monitored by measuring the growth of the precipitate zone.When a thin film is subject to a focused, electron beam, a non uniform defect distribution is produced. The effective beam diameter, D∘, is defined by IT= I∘ (πD∘/2)2 where IT is the total electron current and I∘ is the peak electron flux.

1995 ◽  
Vol 396 ◽  
Author(s):  
M. J. Giacobbe ◽  
N. Q. Lam ◽  
P. R. Okamoto ◽  
J. F. Stubbins

AbstractThe effects of 75-keV Ne+ and 300-keV Ni+ bombardment on electron radiation-induced segregation (RIS) in a Ni-9at%Al alloy were investigated in-situ using the HVEM (high voltage electron microscope)/Tandem accelerator facility at Argonne National Laboratory. The radial component of defect fluxes generated by a highly-focused 900-keV electron beam was used to induce segregation of Al atoms towards the center of the electron irradiated area via the inverse-Kirkendall effect. The radial segregation rate was monitored by measuring the increase in the diameter of the Al enriched zone within which γ'-νi3αl precipitates form during irradiation. Both dual electron-ion and pre-implanted ion-electron irradiations were performed in an attempt to separate the contributions of energetic displacement cascades and implanted ions acting as defect trapping sites to RIS suppression. It was found that 75-keV Ne implantation has a retarding effect on RIS.


Author(s):  
Charles W. Allen ◽  
Robert C. Birtcher

The uranium silicides, including U3Si, are under study as candidate low enrichment nuclear fuels. Ion beam simulations of the in-reactor behavior of such materials are performed because a similar damage structure can be produced in hours by energetic heavy ions which requires years in actual reactor tests. This contribution treats one aspect of the microstructural behavior of U3Si under high energy electron irradiation and low dose energetic heavy ion irradiation and is based on in situ experiments, performed at the HVEM-Tandem User Facility at Argonne National Laboratory. This Facility interfaces a 2 MV Tandem ion accelerator and a 0.6 MV ion implanter to a 1.2 MeV AEI high voltage electron microscope, which allows a wide variety of in situ ion beam experiments to be performed with simultaneous irradiation and electron microscopy or diffraction.At elevated temperatures, U3Si exhibits the ordered AuCu3 structure. On cooling below 1058 K, the intermetallic transforms, evidently martensitically, to a body-centered tetragonal structure (alternatively, the structure may be described as face-centered tetragonal, which would be fcc except for a 1 pet tetragonal distortion). Mechanical twinning accompanies the transformation; however, diferences between electron diffraction patterns from twinned and non-twinned martensite plates could not be distinguished.


Author(s):  
R. C. Birtcher ◽  
L. M. Wang ◽  
C. W. Allen ◽  
R. C. Ewing

We present here results of in situ TEM diffraction observations of the response of U3Si and U3Si2 when subjected to 1 MeV electron irradiation or to 1.5 MeV Kr ion irradiation, and observations of damage occuring in natural zirconolite. High energy electron irradiation or energetic heavy ion irradiation were performed in situ at the HVEM-Tandem User Facility at Argonne National Laboratory. In this Facility, a 2 MV Tandem ion accelerator and a 0.6 MV ion implanter have been interfaced to a 1.2 MeV AEI high voltage electron microscope. This allows a wide variety of in situ experiments to be performed with simultaneous ion irradiation and conventional transmission electron microscopy. During the electron irradiation, the electron beam was focused to a diameter of about 2 μ.m at the specimen thin area. The ion beam was approximately 2 mm in diameter and was uniform over the entire specimen. With the specimen mounted in a heating holder, the temperature increase indicated by the furnace thermocouple during the ion irradiation was typically 8 °K.


1994 ◽  
Vol 373 ◽  
Author(s):  
N. Bordes ◽  
R.C. Ewing

AbstractBerlinite (AIPO4) is isostructural with α-quartz. Like α-quartz, berlinite undergoes a pressure-induced amorphization at 15 ±3 GPa; however, upon release of the pressure, unlike α-quartz which remains amorphous, berlinite returns to the original crystalline structure of the single crystal. Berlinite was irradiated with 1.5 MeV Kr+ at temperatures ranging from 20 to 600K. The onset of amorphization was examined by monitoring the electron diffraction pattern by in situ transmission electron microscopy (TEM) at the HVEM-Tandem Facility at Argonne National Laboratory. The berlinite was easily amorphized at 20K at a relatively low dose of 4x1013 ions/cm2 or 0.05 dpa (displacements per atom). The critical amorphization dose increases with the sample temperature. These experiments also showed that the focused electron beam can locally amorphize the berlinite. After these irradiations, berlinite remained amorphous. At 500 °C, berlinite began to recrystallize: small areas of crystalline material appear in the aperiodic matrix. These results suggest that pressure-induced amorphization and ion-beam induced amorphization, in the case of berlinite, are different processes that result in two different aperiodic structural states.


Author(s):  
C. W. Allen ◽  
E. A. Ryan ◽  
S. T. Ockers

Established in 1981, the High Voltage Electron Microscope-Tandem Ion Accelerator Facility (HVEM-Tandem) is a user-oriented resource for materials research. It is located at Argonne National Laboratory about 20 miles south of O'Hare International Airport near Chicago. The Facility consists of a modified Kratos/AEI HVEM with accelerating voltages ranging continuously from 0.1-1.2 MeV, interfaced to a 2 MV tandem and a 0.65 MV ion implanter-type accelerator. This combination of instruments offers capability, unique in the western hemisphere, for a wide range of in Situ experiments involving ion irradiation and ion implantation with simultaneous microscopy. During 1987 approximately 75% of microscope time was devoted to this type of experiment (Fig. 1) including studies of solid state phase transformations, such as amorphization, radiation damage and defect structures and the implantation of noble gas and metal ions.In situ experiments of various types account for nearly 90% of usage of the HVEM. In addition to the radiation effects studies, this includes experiments performed in the microscope involving deformation, annealing and environmental effects.


Author(s):  
Charles W. Allen

When thin polycrystalline films of Au, Cu and various other materials are subjected to energetic ion irradiation, the average grain size increases even at cryogenic temperatures. As is the case with many ion beam processes, this phenomenon of ion irradiation induced grain growth exhibits only a very mild temperature dependence. This contribution is based on in situ experiments, performed at the HVEM-Tandem User Facility at Argonne National Laboratory. This Facility interfaces a 2 MV Tandem ion accelerator and a 0.6 MV ion implanter to a 1.2 MV AEI high voltage electron microscope, which allows a wide variety of in situ ion beam experiments to be performed with simultaneous irradiation and electron microscopy or diffraction. A series of in situ ion and/or electron irradiation experiments is being performed at the HVEM-Tandem Facility at Argonne which have shown clearly for fine grained Au films that two mechanisms for growth are operative for the ion beam case: grain boundary migration as in normal thermal grain growth and grain coalescence which is similar in appearance to recrystallization by subgrain coalescence. Especially in the case of Au for which ion-induced growth is relatively rapid, such in situ experiments also demonstrate the importance of dislocation activity which is a consequence of the collision cascade damage associated with ion irradiation. Existing theories for irradiation-induced grain growth assume that growth occurs by boundary migration and that only point defects generated at grain boundaries are responsible for the growth phenomenon.


1996 ◽  
Vol 439 ◽  
Author(s):  
M. J. Giacobbe ◽  
N. Q. Lam ◽  
P. R. Okamoto ◽  
N. J. Zaluzec ◽  
J. F. Stubbins

AbstractThe effects of Ne and Sc implantation on radiation-induced segregation (RIS) in Ni- 9at.%Al were studied in-situ utilizing the high-voltage electron microscopeffandem accelerator facility at Argonne National Laboratory. A highly-focused 900-keV electron beam generated radial defect fluxes which, in turn, induced the transport of Al atoms toward the center of the electronirradiated area via the inverse-Kirkendall effect. The radial segregation rate of Al atoms was monitored by measuring the diameter of the γ′-Ni3Al zone which formed in the Al-enriched area during irradiation. Ne and Sc implantation effects on RIS were investigated at 550°C, while Ne effects were also examined at 625°C to determine the influence of temperature on the ability of Ne to act as defect trapping sites, causing RIS suppression. It was found that the RIS suppression effect of Ne increased with increasing irradiation temperature, and that Sc had a small RIS suppression effect which increased with increasing Sc implantation dose. Ne bubbles which formed during implantation are believed to be responsible for its strong suppression effect.


2008 ◽  
Vol 1122 ◽  
Author(s):  
Karl R. Whittle ◽  
Katherine L. Smith ◽  
Mark G. Blackford ◽  
Simon A.T. Redfern ◽  
Elizabeth J. Harvey ◽  
...  

AbstractSynthetic pyrochlore samples Y2Ti2-xSnxO7 (x=0.4, 0.8, 1.2, 1.6), Nd2Zr2O7, Nd2Zr1.2Ti0.8O7, and La1.6Y0.4Hf2O7, were irradiated in-situ using the IVEM-TANDEM microscope facility at the Argonne National Laboratory. The critical temperatures for amorphisation have revealed a dramatic increase in tolerance with increasing Sn content for the Y2Ti2-xSnxO7 series. This change has also found to be linear with increasing Sn content. Nd2Zr1.2Ti0.8O7 and La1.6Y0.4Hf2O7 were both found to amorphise, while Nd2Zr2O7 was found to be stable to high doses (2.5×10^15 ions cm-2). The observed results are presented with respect to previously published results for irradiation stability predictions and structural disorder.


1988 ◽  
Vol 100 ◽  
Author(s):  
M. W. Bench ◽  
I. M. Robertson ◽  
M. A. Kirk

ABSTRACTTransmission electron microscopy experiments have been performed to investigate the lattice damage created by heavy-ion bombardments in GaAs. These experiments have been performed in situ by using the HVEN - Ion Accelerator Facility at Argonne National Laboratory. The ion bcorbardments (50 keV Ar+ and Kr+) and the microscopy have been carried out at temperatures rangrin from 30 to 300 K. Ion fluences ranged from 2 × 1011 to 5 × 1013 ions cm−2.Direct-inpact amorphization is observed to occur in both n-type and semi-insulating GaAs irradiated to low ion doses at 30 K and room temperature. The probability of forming a visible defect is higher for low temperature irradiations than for room temperature irradiations. The amorphous zones formed at low temperature are stable to temperatures above 250 K. Post implantation annealing is seen to occur at room temperature for all samples irradiated to low doses until eventually all visible damage disappears.


1992 ◽  
Vol 279 ◽  
Author(s):  
A. T. Motta ◽  
L. M. Howe ◽  
P. R. Okamoto

ABSTRACTThin foils of Zircaloy-4 were irradiated with 350 KeV 40Ar ions in the dual ion beam/HVEM facility at Argonne National Laboratory at 300 – 650 K. The irradiation-induced araorphization of the intermetallic precipitates Zr (Cr, Fe)2 and Zr2 (Ni, Fe) was studied in situ. For Zr (Cr,Fe)2 precipitates the dose-to-amorphization was found to increase exponentially with temperature, with a critical temperature of about 650 K. The amorphization morphology was shown to be homogeneous, with no preferential site for nucleation, in contrast to neutron-irradiation amorphization which started at the precipitate-matrix interface. For Zr2 (Ni,Fe) precipitates it was found that amorphization occurred at 550 K and 600 K, whereas in neutron irradiation no amorphization has been observed at those temperatures. The results are discussed in the context of the previous experimental results of neutron and electron irradiation and likely amorphization mechanisms are proposed.


Sign in / Sign up

Export Citation Format

Share Document