Observation of magnetic domain in magnetic disk

Author(s):  
F. Nagata ◽  
T. Shimotsu ◽  
C. Tsuruta ◽  
M. Kubozoe

A technological key to successful development of high-density magnetic disk lies in how to prevent mutual interference between adjacent bits i.e. how to provide narrower and simpler configulation of magnetic domain. Development of observation technique of finer magnetic domain, therefore, has been strongly required. Lorentz microscopy is one of the most promising method. Some studies have been made to observe recorded magnetic thin films.The purpose of the present investigation is to develop high resolution Lorentz microscopy(out of focus method) for investigation of recorded magnetic disk.High resolution and high voltage electron microscope (H-9000UHR) is used operating at 300kV. Objective lens is excited to realize smaller aberration. In order to protect specimens from magnetic field of objective lens, a special specimen holder is developed. Figure 1 shows a sectional view of objective lens and specimen holder.

Author(s):  
Louis T. Germinario

A liquid nitrogen stage has been developed for the JEOL JEM-100B electron microscope equipped with a scanning attachment. The design is a modification of the standard JEM-100B SEM specimen holder with specimen cooling to any temperatures In the range ~ 55°K to room temperature. Since the specimen plane is maintained at the ‘high resolution’ focal position of the objective lens and ‘bumping’ and thermal drift la minimized by supercooling the liquid nitrogen, the high resolution capability of the microscope is maintained (Fig.4).


Author(s):  
K. Shi rota ◽  
A. Yonezawa ◽  
K. Shibatomi ◽  
T. Yanaka

As is well known, it is not so easy to operate a conventional transmission electron microscope for observation of magnetic materials. The reason is that the instrument requires re-alignment of the axis and re-correction of astigmatism after each specimen shift, as the lens field is greatly disturbed by the specimen. With a conventional electron microscope, furthermore, it is impossible to observe magnetic domains, because the specimen is magnetized to single orientation by the lens field. The above mentioned facts are due to the specimen usually being in the lens field. Thus, special techniques or systems are usually required for magnetic material observation (especially magnetic domain observation), for example, the technique to switch off the objective lens current and Lorentz microscopy. But these cannot give high image quality and wide magnification range, and furthermore Lorentz microscopy is very complicated.


Author(s):  
Sonoko Tsukahara ◽  
Tadami Taoka ◽  
Hisao Nishizawa

The high voltage Lorentz microscopy was successfully used to observe changes with temperature; of domain structures and metallurgical structures in an iron film set on the hot stage combined with a goniometer. The microscope used was the JEM-1000 EM which was operated with the objective lens current cut off to eliminate the magnetic field in the specimen position. Single crystal films with an (001) plane were prepared by the epitaxial growth of evaporated iron on a cleaved (001) plane of a rocksalt substrate. They had a uniform thickness from 1000 to 7000 Å.The figure shows the temperature dependence of magnetic domain structure with its corresponding deflection pattern and metallurgical structure observed in a 4500 Å iron film. In general, with increase of temperature, the straight domain walls decrease in their width (at 400°C), curve in an iregular shape (600°C) and then vanish (790°C). The ripple structures with cross-tie walls are observed below the Curie temperature.


Author(s):  
Earl J. Kirkland ◽  
Robert J. Keyse

An ultra-high resolution pole piece with a coefficient of spherical aberration Cs=0.7mm. was previously designed for a Vacuum Generators HB-501A Scanning Transmission Electron Microscope (STEM). This lens was used to produce bright field (BF) and annular dark field (ADF) images of (111) silicon with a lattice spacing of 1.92 Å. In this microscope the specimen must be loaded into the lens through the top bore (or exit bore, electrons traveling from the bottom to the top). Thus the top bore must be rather large to accommodate the specimen holder. Unfortunately, a large bore is not ideal for producing low aberrations. The old lens was thus highly asymmetrical, with an upper bore of 8.0mm. Even with this large upper bore it has not been possible to produce a tilting stage, which hampers high resolution microscopy.


Author(s):  
S. Horiuchi ◽  
Y. Matsui

A new high-voltage electron microscope (H-1500) specially aiming at super-high-resolution (1.0 Å point-to-point resolution) is now installed in National Institute for Research in Inorganic Materials ( NIRIM ), in collaboration with Hitachi Ltd. The national budget of about 1 billion yen including that for a new building has been spent for the construction in the last two years (1988-1989). Here we introduce some essential characteristics of the microscope.(1) According to the analysis on the magnetic field in an electron lens, based on the finite-element-method, the spherical as well as chromatic aberration coefficients ( Cs and Cc ). which enables us to reach the resolving power of 1.0Å. have been estimated as a function of the accelerating As a result of the calculaton. it was noted that more than 1250 kV is needed even when we apply the highest level of the technology and materials available at present. On the other hand, we must consider the protection against the leakage of X-ray. We have then decided to set the conventional accelerating voltage at 1300 kV. However. the maximum accessible voltage is 1500 kV, which is practically important to realize higher voltage stabillity. At 1300 kV it is expected that Cs= 1.7 mm and Cc=3.4 mm with the attachment of the specimen holder, which tilts bi-axially in an angle of 35° ( Fig.1 ). In order to minimize the value of Cc a small tank is additionally placed inside the generator tank, which must serve to seal the magnetic field around the acceleration tube. An electron gun with LaB6 tip is used.


Author(s):  
David J. Smith

The initial attractions of the high voltage electron microscope (HVEM) stemmed mainly from the possibility of considerable increases in electron penetration through thick specimens compared with conventional 100KV microscopes, although the potential improvement in resolution associated with the decrease in election wavelength had been fully appreciated for many years (eg. Cosslett, 1946)1, even if not realizable in practice. Subsequent technological advances enabled the performance of lower voltage machines to be brought closer to the theoretical limit, to be followed in turn by more recent projects which have been successful, eventually, in achieving even higher resolution with dedicated higher voltage instruments such as those at Kyoto (500KV)2, Munich (400KV)3, Ibaraki (1250KV)4 and Cambridge (600KV)5. It does not necessarily follow however that the performance of journal high voltage microscopes can be easily upgraded, retrospectively, to the same level, as will be discussed in detail below.


Author(s):  
M. Haider ◽  
P. Hartel ◽  
H. Müller ◽  
S. Uhlemann ◽  
J. Zach

The achievable resolution of a modern transmission electron microscope (TEM) is mainly limited by the inherent aberrations of the objective lens. Hence, one major goal over the past decade has been the development of aberration correctors to compensate the spherical aberration. Such a correction system is now available and it is possible to improve the resolution with this corrector. When high resolution in a TEM is required, one important parameter, the field of view, also has to be considered. In addition, especially for the large cameras now available, the compensation of off-axial aberrations is also an important task. A correction system to compensate the spherical aberration and the off-axial coma is under development. The next step to follow towards ultra-high resolution will be a correction system to compensate the chromatic aberration. With such a correction system, a new area will be opened for applications for which the chromatic aberration defines the achievable resolution, even if the spherical aberration is corrected. This is the case, for example, for low-voltage electron microscopy (EM) for the investigation of beam-sensitive materials, for dynamic EM or for in-situ EM.


Author(s):  
N.T. Nuhfer ◽  
J. Dooley ◽  
M. De Graef

Lorentz microscopy provides an important technique for the study of advanced magnetic recording media. Recording densities as high as 10 Gbit/in may be within reach in the future. Microstructural characterization of both the crystallographic and magnetic structure of these thin films is needed at the highest spatial resolution. Another area where Lorentz microscopy has proven to be an extremely valuable tool is in magnetic actuator applications, in particular for magnetostrictive alloys, such as Terfenol-D. The standard Lorentz techniques (Fresnel and Foucault imaging) require a low-field environment, so that the sample is not completely saturated during observations. Depending on the microscope type this low-field area can be obtained by either switching off the objective lens and using the weak post-field to focus the image, or by using special low-field pole pieces. The attainable magnification in both cases is usually lower than for conventional TEM. Recently a new low-field lens for the JEOL 4000EX TEM was reported (AMG40, 1 Gauss field strength) with a useful magnification range upto × 200,000. In this paper we report an alternative method to obtain high magnification magnetic domain images at 400 kV.


2001 ◽  
Vol 7 (S2) ◽  
pp. 1242-1243
Author(s):  
J.P. Zhang ◽  
Y.X. Guo ◽  
J.S. Speck

Magnetic domain structures in a Ni-5at%P alloy have been examined using Lorentz microscopy in Fresnel mode in a JEOL 2010TEM. with electron diffraction and high resolution electron imaging, the Ni-P alloy material is seen to be of FCC structure and composed of nanometer-sized grains (< 4nm in diameter), which is about 2 orders less in size than that of a single magnetic domain.The TEM specimen was prepared using jet polishing method. Before introducing the specimen into the microscope, the objective lens was turned off in a free lens control mode to ensure that the domain structures in the specimen remain unaffected. The objective mini-lens was used to perform Lorentz imaging with out-focus method.Stripe domains were observed. The width of these stripes is about 0.2 micron. But the length of these domains varies, sometime up to several microns. The stripe domains are grouped, which are near parallel one to the other.


Sign in / Sign up

Export Citation Format

Share Document