The Characterization of the Low-Index α-Al203 Surfaces by REM

Author(s):  
Yootaek Kim

Four low-index surfaces; (A-surface), (0001) (basal surface), (R-surface), and of the α-Al203 single crystals were investigated by reflection electron microscopy (REM) and reflection high energy electron diffraction (RHEED) techniques[1] and the characteristics of these surfaces are reported. Specimens were prepared by polishing and annealing[2, 3], Orientation of each surface was confirmed with x-ray diffraction using a Laue camera. Microscopy observation was carried out on a JEOL JEM-200CX TEM operated at 100 KV.To facilitate a fair comparison, the surface areas which were obviously affected by a macroscopic tilt, localized contamination, etc., were avoided. Only the flat, clean, and smooth areas were compared. The surface (Fig. 1. The scale in this figure also applies to all other figures.) shows large atomically flat areas divided by steps running in <000 1> and directions. The steps in this image are not of the same height. Some are one or two atoms high and others are much higher. Fig. 2 shows the surface which is periodically facetted. One type of the facets is flat and atomically smooth while the other type is rough. The (0001) planes display curved and/or straight steps[4]. An example of curved step configuration is shown in Fig. 3. Most of the steps in this image have the same height. This step configuration is similar to the surface shown in Fig. 4. However, the contrast of the steps are very different; on the (0001) surfaces the steps are much darker and well-defined. A summary of these four surfaces is presented in the table below.

1995 ◽  
Vol 395 ◽  
Author(s):  
S. A. Ustin ◽  
L. Lauhon ◽  
K. A. Brown ◽  
D. Q. Hu ◽  
W. Ho

ABSTRACTHighly oriented aluminum nitride (0001) films have been grown on Si(001) and Si (111) substrates at temperatures between 550° C and 775° C with dual supersonic molecular beam sources. Triethylaluminum (TEA;[(C2H5)3Al]) and ammonia (NH3) were used as precursors. Hydrogen, helium, and nitrogen were used as seeding gases for the precursors, providing a wide range of possible kinetic energies for the supersonic beams due to the disparate masses of the seed gases. Growth rates of AIN were found to depend strongly on the substrate orientation and the kinetic energy of the incident precursor; a significant increase in growth rate is seen when seeding in hydrogen or helium as opposed to nitrogen. Growth rates were 2–3 times greater on Si(001) than on Si(111). Structural characterization of the films was done by reflection high energy electron diffraction (RHEED) and x-ray diffraction (XRD). X-ray rocking curve (XRC) full-width half-maxima (FWHM) were seen as small as 2.5°. Rutherford back scattering (RBS) was used to determine the thickness of the films and their chemical composition. Films were shown to be nitrogen rich, deviating from perfect stoichiometry by 10%–20%. Surface analysis was performed by Auger electron spectroscopy (AES).


2018 ◽  
Vol 941 ◽  
pp. 1232-1237
Author(s):  
Alisiya Biserova-Tahchieva ◽  
Isabel López-Jiménez ◽  
Núria Llorca-Isern

Nanocrystalline structure of CuFeCo (50:25:25 wt%) alloy has been obtained by high energy mechanical milling from elemental metal powder mixture during large hours of work. Phase transformations and diffusion in the system subjected to heat treatment are discussed. Thermal stability at high temperatures is analysed and considered of importance for several applications. The nanostructure was studied by employing X-Ray diffraction and electron microscopy. It has been determined the reduction in crystallite size and the induced microstrain by the milling time. The solid solution achievement through the increment of defect density was confirmed by Mössbauer analysis. Magnetic behaviour was analysed through magnetization technique entailing their soft ferromagnetic behaviour related to the microstructural changes.


2016 ◽  
Vol 471 ◽  
pp. 280-288 ◽  
Author(s):  
Xuan Zhang ◽  
Jun-Sang Park ◽  
Jonathan Almer ◽  
Meimei Li

2013 ◽  
Vol 829 ◽  
pp. 515-519 ◽  
Author(s):  
Shaghayegh Gharegozloo ◽  
Hossein Abdizadeh ◽  
Abolghasem Ataie

The interest in using CNTs as the reinforcement of metal matrix nanocomposites has been growing considerably due to their enhanced properties. In the present work, nickel was reinforced by carbon nanotubes (CNTs) via high energy mechanical milling method. The effects of various amounts of CNTs (5%, 10%, 20% and 30%) and different milling times (1, 5, 10 and 15 hours) were investigated. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and vibrating sample magnetometer (VSM) analysis were used for evaluation of phase composition, morphology and magnetic properties of the samples, respectively. The results showed a homogeneous dispersion of CNTs into the nickel matrix phase by mechanical milling. It was observed that the increase in the milling time, for a particular amount of CNTs, caused a decrease of mean crystallite size from 56 nm to 35 nm. The increase of CNTs amount also resulted in the powder particle refinement. VSM analysis showed that with the increase of CNTs from 0% to 30%, the magnetization of the samples decreases from 52.36 to 30.74 emu/g, and the coercivity of the nanocomposites increases from 61.45 to 114 Oe.


2021 ◽  
Vol 2129 (1) ◽  
pp. 012092
Author(s):  
Suffi Irni Alias ◽  
Banjuraizah Johar ◽  
Syed Nuzul Fadzli Adam ◽  
Mustaffa Ali Azhar Taib ◽  
Fatin Fatini Othman ◽  
...  

Abstract The porcelain formulation containing percentages of treated FGD sludge waste from 5% up to 15% in replacement of feldspar were prepared. The porcelain mixture formulation were mixed by high energy planatery mill at speed 300 rpm for 1 hours. The powder were compacted by using hydraulic press and sintered at temperature 1200 °C for 3 hours. The sintered samples were characterized using X-ray fluorescene (XRF), X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) and Thermogravimetry/Differential scanning calorimetry (TGA/DCS). The primary effect concerning the addition of treated FGD sludge was the change of intensity composition (gypsum and anhydrate) in porcelain formulation. The XRD analysis has shown that the main component in sludge waste were gypsum and anhydrate.


2020 ◽  
Vol 104 (3) ◽  
pp. 1424-1435
Author(s):  
Michael W. Knauf ◽  
Craig P. Przybyla ◽  
Paul A. Shade ◽  
Jun‐Sang Park ◽  
Andrew J. Ritchey ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document