Single Crystal Wurtzitic Aluminum Nitride Growth on Silicon Using Supersonic Gas Jets

1995 ◽  
Vol 395 ◽  
Author(s):  
S. A. Ustin ◽  
L. Lauhon ◽  
K. A. Brown ◽  
D. Q. Hu ◽  
W. Ho

ABSTRACTHighly oriented aluminum nitride (0001) films have been grown on Si(001) and Si (111) substrates at temperatures between 550° C and 775° C with dual supersonic molecular beam sources. Triethylaluminum (TEA;[(C2H5)3Al]) and ammonia (NH3) were used as precursors. Hydrogen, helium, and nitrogen were used as seeding gases for the precursors, providing a wide range of possible kinetic energies for the supersonic beams due to the disparate masses of the seed gases. Growth rates of AIN were found to depend strongly on the substrate orientation and the kinetic energy of the incident precursor; a significant increase in growth rate is seen when seeding in hydrogen or helium as opposed to nitrogen. Growth rates were 2–3 times greater on Si(001) than on Si(111). Structural characterization of the films was done by reflection high energy electron diffraction (RHEED) and x-ray diffraction (XRD). X-ray rocking curve (XRC) full-width half-maxima (FWHM) were seen as small as 2.5°. Rutherford back scattering (RBS) was used to determine the thickness of the films and their chemical composition. Films were shown to be nitrogen rich, deviating from perfect stoichiometry by 10%–20%. Surface analysis was performed by Auger electron spectroscopy (AES).

2005 ◽  
Vol 892 ◽  
Author(s):  
Qianghua Wang ◽  
Jianzeng Xu ◽  
Changhe Huang ◽  
Gregory W Auner

AbstractThis paper reports the fabrication and characterization of micromachined ultrasonic transducers (MUT) based on piezoelectric aluminum nitride (AlN) thin films. The MUT device is composed of an Al/AlN/Al sandwiched structure overlaid on top of a silicon (Si) diaphragm. X-ray diffraction (XRD) scan shows that highly c-axis oriented AlN (002) thin films have been grown on Al/Si(100) substrates. Electrical impedance of the MUT devices is analyzed as a function of frequency. The fundamental resonant frequencies of the devices are found in the range of 65-70 kHz, which are in approximation to the theoretical calculation. The effective coupling factors of the devices are also derived as 0.18.


2004 ◽  
Vol 831 ◽  
Author(s):  
Phanikumar Konkapaka ◽  
Huaqiang Wu ◽  
Yuri Makarov ◽  
Michael G. Spencer

ABSTRACTBulk GaN crystals of dimensions 8.5 mm × 8.5 mm were grown at growth rates greater than 200μm/hr using Gallium Vapor Transport technique. GaN powder and Ammonia were used as the precursors for growing bulk GaN. Nitrogen is used as the carrier gas to transport the Ga vapor that was obtained from the decomposition of GaN powder. During the process, the source GaN powder was kept at 1155°C and the seed at 1180°C. Using this process, it was possible to achieve growth rates of above 200 microns/hr. The GaN layers thus obtained were characterized using X-Ray diffraction [XRD], scanning electron microscopy [SEM], and atomic force microscopy [AFM]. X-ray diffraction patterns showed that the grown GaN layers are single crystals oriented along c direction. AFM studies indicated that the dominant growth mode was dislocation mediated spiral growth. Electrical and Optical characterization were also performed on these samples. Hall mobility measurements indicated a mobility of 550 cm2/V.s and a carrier concentration of 6.67 × 1018/cm3


Chemistry ◽  
2020 ◽  
Vol 2 (2) ◽  
pp. 591-599
Author(s):  
Brock A. Stenfors ◽  
Richard J. Staples ◽  
Shannon M. Biros ◽  
Felix N. Ngassa

Treatment of 2,4-dinitrophenol with sulfonyl chlorides in the presence of pyridine results in the formation of undesired pyridinium salts. In non-aqueous environments, the formation of the insoluble pyridinium salt greatly affects the formation of the desired product. A facile method of producing the desired sulfonate involves the use of an aqueous base with a water-miscible solvent. Herein, we present the optimization of methods for the formation of sulfonates and its application in the production of desired x-substituted 2,4-dinitrophenyl-4′-phenylbenzenesulfonates. This strategy is environmentally benign and supports a wide range of starting materials. Additionally, the intermolecular interactions of these sulfonate compounds were investigated using single-crystal x-ray diffraction data.


2018 ◽  
Vol 941 ◽  
pp. 1232-1237
Author(s):  
Alisiya Biserova-Tahchieva ◽  
Isabel López-Jiménez ◽  
Núria Llorca-Isern

Nanocrystalline structure of CuFeCo (50:25:25 wt%) alloy has been obtained by high energy mechanical milling from elemental metal powder mixture during large hours of work. Phase transformations and diffusion in the system subjected to heat treatment are discussed. Thermal stability at high temperatures is analysed and considered of importance for several applications. The nanostructure was studied by employing X-Ray diffraction and electron microscopy. It has been determined the reduction in crystallite size and the induced microstrain by the milling time. The solid solution achievement through the increment of defect density was confirmed by Mössbauer analysis. Magnetic behaviour was analysed through magnetization technique entailing their soft ferromagnetic behaviour related to the microstructural changes.


2016 ◽  
Vol 471 ◽  
pp. 280-288 ◽  
Author(s):  
Xuan Zhang ◽  
Jun-Sang Park ◽  
Jonathan Almer ◽  
Meimei Li

2013 ◽  
Vol 829 ◽  
pp. 515-519 ◽  
Author(s):  
Shaghayegh Gharegozloo ◽  
Hossein Abdizadeh ◽  
Abolghasem Ataie

The interest in using CNTs as the reinforcement of metal matrix nanocomposites has been growing considerably due to their enhanced properties. In the present work, nickel was reinforced by carbon nanotubes (CNTs) via high energy mechanical milling method. The effects of various amounts of CNTs (5%, 10%, 20% and 30%) and different milling times (1, 5, 10 and 15 hours) were investigated. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and vibrating sample magnetometer (VSM) analysis were used for evaluation of phase composition, morphology and magnetic properties of the samples, respectively. The results showed a homogeneous dispersion of CNTs into the nickel matrix phase by mechanical milling. It was observed that the increase in the milling time, for a particular amount of CNTs, caused a decrease of mean crystallite size from 56 nm to 35 nm. The increase of CNTs amount also resulted in the powder particle refinement. VSM analysis showed that with the increase of CNTs from 0% to 30%, the magnetization of the samples decreases from 52.36 to 30.74 emu/g, and the coercivity of the nanocomposites increases from 61.45 to 114 Oe.


Sign in / Sign up

Export Citation Format

Share Document