Effects of Herbicide Application Timing on Johnsongrass (Sorghum halepense) and Pitted Morningglory (Ipomoea lacunosa) Control

1990 ◽  
Vol 4 (4) ◽  
pp. 900-903 ◽  
Author(s):  
David R. Shaw ◽  
Sunil Ratnayake ◽  
Clyde A. Smith

Field experiments were conducted to evaluate the influence of application timing of imazethapyr and fluazifop-P on rhizome johnsongrass and pitted morningglory control in soybean. Herbicides were applied at three timings keyed to johnsongrass heights of 15, 30, and 60 cm and 3-, 6-, and 9-leaf pitted morningglory. Evaluations 6 wk after the final treatment indicated imazethapyr controlled both species best when applied at the 15-cm johnsongrass growth stage. Increasing imazethapyr rate did not increase control of pitted morningglory, but did increase johnsongrass control at the 15-cm application timing. However, at the 30-cm johnsongrass application timing, increasing the rate from 0.07 to 0.10 kg ha-1improved control of both species. Johnsongrass control with imazethapyr was no more than 64% when applications were delayed to 30-cm or larger johnsongrass. Fluazifop-P controlled johnsongrass well at all timings.

Weed Science ◽  
1988 ◽  
Vol 36 (5) ◽  
pp. 663-666 ◽  
Author(s):  
Dennis G. Riley ◽  
David R. Shaw

Field experiments were conducted to evaluate postemergence combinations of imazethapyr, imazquin, or chlorimuron with low rates of imazapyr for Johnsongrass and pitted morningglory control. Imazapyr applied alone at rates up to 4 g ai/ha gave little or no control of either weed species. However, the addition of imazapyr to various rates of imazethapyr or imazaquin synergistically increased both johnsongrass and pitted morningglory control 8 weeks after treatment. The rates of imazethapyr or imazaquin required for significant enhancement of johnsongrass control were higher than those required for pitted morningglory control. No synergistic increases in control of either weed species were noted with mixtures of imazapyr and chlorimuron. Although not synergistic in every case, the mixtures of imazapyr at 4 g/ha with imazethapyr, imazaquin, or chlorimuron gave johnsongrass and pitted morningglory control equal to or better than the next higher rate of these herbicides applied alone. Imazapyr did not increase soybean injury or decrease yield provided by chlorimuron, imazaquin, or imazethapyr.


1997 ◽  
Vol 11 (2) ◽  
pp. 373-378 ◽  
Author(s):  
Joseph A. Bruce ◽  
James J. Kells

Quackgrass is a serious weed problem in the northern United States and southern Canada. Field experiments were conducted in 1990 and 1991 to examine the effect of herbicide rate, application timing, quackgrass growth stage, and cultivation on quackgrass control with nicosulfuron and primisulfuron in corn. Nicosulfuron (35 g ai/ha) and primisulfuron (40 g ai/ha) each provided 84% or greater control of two-leaf plants and 93% or greater control of four-leaf quackgrass plants. Sequential applications of both nicosulfuron and primisulfuron provided greater season-long control than single applications of the same rate on two-leaf but not four-leaf quackgrass. Cultivation 10 d after nicosulfuron or primisulfuron application often increased early-season control, but by corn harvest few differences were observed. Postemergence (POST) applications of nicosulfuron and primisulfuron provided at least 88% control, compared with 66 to 86% from an early preplant application of glyphosate. Corn yields were similar regardless of the quackgrass control program.


2019 ◽  
Vol 33 (03) ◽  
pp. 448-458 ◽  
Author(s):  
Brendan A. Metzger ◽  
Nader Soltani ◽  
Alan J. Raeder ◽  
David C. Hooker ◽  
Darren E. Robinson ◽  
...  

AbstractEffective POST herbicides and herbicide mixtures are key components of integrated weed management in corn; however, herbicides vary in their efficacy based on application timing. Six field experiments were conducted over 2 yr (2017–2018) in southwestern Ontario, Canada, to determine the effects of herbicide application timing and rate on the efficacy of tolpyralate, a new 4-hydroxyphenyl pyruvate dioxygenase inhibitor. Tolpyralate at 15, 30, or 40 g ai ha−1 in combination with atrazine at 500 or 1,000 g ai ha−1 was applied PRE, early POST, mid-POST, or late POST. Tolpyralate + atrazine at rates ≥30 + 1,000 g ha−1 provided equivalent control of common lambsquarters and Powell amaranth applied PRE or POST, whereas no rate applied PRE controlled common ragweed, velvetleaf, barnyardgrass, or green foxtail. Common ragweed, common lambsquarters, velvetleaf, and Powell amaranth were controlled equally regardless of POST timing. In contrast, control of barnyardgrass and green foxtail declined when herbicide application was delayed to the late-POST timing, irrespective of herbicide rate. Similarly, corn grain yield declined within each tolpyralate + atrazine rate when herbicide applications were delayed to late-POST timing. Overall, the results of this study indicate that several monocot and dicot weed species can be controlled with tolpyralate + atrazine with an early to mid-POST herbicide application timing, before weeds reach 30 cm in height, and Powell amaranth and common lambsquarters can also be controlled PRE. Additionally, this study provides further evidence highlighting the importance of effective, early-season weed control in corn.


1991 ◽  
Vol 5 (2) ◽  
pp. 434-438 ◽  
Author(s):  
Marshall B. Wixson ◽  
David R. Shaw

Field experiments were established in 1989 and 1990 to determine the effects of application rate and timing on sicklepod control and soybean tolerance to POST applications of AC 263,222 and chlorimuron. When applied to 3-, 6-, or 10-leaf sicklepod, 35 g ai ha-1or more AC 263,222 controlled more than 85% of sicklepod early in the season, and season-long when applied to 3- or 6-leaf sicklepod. At all timings, 70 g ha-1or more AC 263,222 resulted in better control than a PRE application of 420 g ai ha-1metribuzin followed by 9 g ai ha-1chlorimuron applied POST. At 35 g ha-1or more AC 263,222, application timing did not affect sicklepod control. However, control was reduced with 18 g ha-1when applications were delayed from 3- or 6-leaf to 10-leaf sicklepod. At the 10-leaf sicklepod growth stage, a PRE application of imazaquin increased both sicklepod control and soybean yield with 35 g ha-1AC 263,222 as compared with AC 263,222 applied alone. Soybean injury and height reductions with AC 263,222 at 35 g ha-1and above were greater than with chlorimuron; however, increased soybean injury or height reduction was not reflected in pod numbers or yield.


1996 ◽  
Vol 23 (1) ◽  
pp. 30-36 ◽  
Author(s):  
W. James Grichar ◽  
A. Edwin Colburn

Abstract Field experiments were conducted in 1991 and 1993 to evaluate flumioxazin alone and in various herbicide programs for weed control in peanut. Flumioxazin alone provided inconsistent control of annual grasses, while the addition of pendimethalin or trifluralin improved control considerably. Pitted morningglory (Ipomoea lacunosa L.) and ivyleaf morningglory [Ipomoea hederacea (L.) Jacq.] control was > 75% when flumioxazin was used alone. Flumioxazin caused early season peanut stunting with some recovery within 4 to 6 wk. Postemergence applications of imazethapyr or lactofen increased peanut stunting.


2007 ◽  
Vol 58 (3) ◽  
pp. 265 ◽  
Author(s):  
Catherine P. Borger ◽  
Abul Hashem

Applying glyphosate followed by a mixture of paraquat + diquat in the same season for pre-planting weed control may reduce the risk of developing resistance to either herbicide. Glasshouse and field experiments at Merredin and Beverly, Western Australia, were conducted over 2 seasons to determine the best herbicide application sequence, growth stage of annual ryegrass at which to apply the 2 herbicides, and application time and interval to be allowed between applications for optimum control of annual ryegrass (Lolium rigidum Gaud.). Annual ryegrass plants were treated at 3 growth stages with either glyphosate 540 g a.i./ha alone, paraquat + diquat 250 g a.i./ha alone, glyphosate followed by paraquat + diquat 250 g a.i./ha, or paraquat + diquat 250 g a.i./ha followed by glyphosate 540 g a.i./ha (the double knockdown treatment). The herbicides were applied at different times of the day, with varied intervals between herbicides when applied in sequence. The glasshouse experiment showed that herbicides in sequence more effectively killed annual ryegrass plants at the 3–6-leaf stage than a single application of either herbicide. Field experiments showed that applying glyphosate followed by paraquat + diquat provided 98–100% control of annual ryegrass plants when applied at the 3- or 6-leaf stage in 2002 and at all 3 growth stages in 2003. Generally, the sequence of paraquat + diquat followed by glyphosate was less effective than the reverse sequence, although the difference was not large. Averaged over 2 seasons, herbicides in sequence were most effective when the first herbicide was applied at the 3- or 6-leaf stage of annual ryegrass. An interval of 2–10 days between applications of herbicides was more effective than 1 day or less. The application time did not significantly affect the efficacy of double knockdown herbicides on annual ryegrass plants under field conditions.


1997 ◽  
Vol 11 (2) ◽  
pp. 283-289 ◽  
Author(s):  
Robert N. Stougaard ◽  
Bruce D. Maxwell ◽  
Jerry D. Harris

Field experiments were conducted during 1992 and 1993 at Kalispell and Moccasin, MT, to determine the influence of application timing on the efficacy of reduced rate postemergence applications of imazamethabenz and diclofop in spring barley. Herbicides were applied at their respective 1 × and ½ × use rates at either 1, 2, or 3 weeks after crop emergence (WAE). While excellent wild oat control was sometimes achieved with reduced rates, there was no consistent relationship between wild oat growth stage and the level of control at either site regardless of the herbicide or rate applied. This response suggests that efficacy is governed not only by wild oat growth stage, but also by weed demographics and environmental considerations. Barley yield and adjusted gross return values were highest at Kalispell when imazamethabenz treatments were applied at 1 WAE, regardless of the level of wild oat control. Adjusted gross return values were similar for the 1 × and ½ × imazamethabenz treatments. Yields and adjusted gross returns with diclofop treatments were more related to the level of wild oat control at Kalispell, with the 1 × diclofop treatments providing the greatest yields and adjusted gross return values. The level of wild oat control at Moccasin had minimal effect on barley yield and adjusted gross returns, with both values being comparable to the nontreated check.


2017 ◽  
Vol 31 (1) ◽  
pp. 120-129
Author(s):  
Matthew D. Jeffries ◽  
Travis W. Gannon ◽  
Fred H. Yelverton

Vaseygrass is an invasive, perennial C4-grass commonly found on roadsides in areas with poorly drained soils. Due to its upright growth habit and seedhead production, vaseygrass can impair motorist sightlines and subsequently, require increased management inputs to maintain vegetation at an acceptable height. Two field experiments were conducted from 2012 to 2015 on North Carolina roadsides to evaluate the effect of mowing and mowing timing with respect to applications of various herbicides on vaseygrass control. Both experiments evaluated clethodim (280 g ai ha–1), foramsulfuron+halosulfuron+thiencarbazone-methyl (44+69+22 g ai ha−1), imazapic (140 g ai ha−1), metsulfuron+nicosulfuron (16+59 g ai ha−1), and sulfosulfuron (105 g ai ha−1) with a nonionic surfactant at 0.25% v/v. Experiment one focused on the effect of mowing (routinely mowed or nonmowed) and herbicide application timing (fall-only, fall-plus-spring, or spring-only), while experiment two focused on pre-herbicide application mowing intervals (6, 4, 3, 2, 1, or 0 wk before treatment [WBT]). From experiment one, routine mowing reduced vaseygrass cover in nontreated plots 55% at 52 wk after fall treatment (WAFT), suggesting this cultural practice should be employed where possible. Additionally, routine mowing and herbicide application season affected herbicide efficacy. Treatments providing >70% vaseygrass cover reduction at 52 WAFT included routinely mowed fall-only clethodim and fall-plus-spring imazapic, and fall-plus-spring metsulfuron+nicosulfuron across mowing regimens. Within clethodim, mowing vaseygrass 2 or 1 WBT resulted in the lowest cover at 40 (1 to 2%) and 52 (4 to 6%) wk after treatment (WAT) compared to other intervals, which aligns with current label vegetation height at treatment recommendation. Vaseygrass persisted across all treatments evaluated through 52 WAT, suggesting eradication of this species will require inputs over multiple growing seasons.


Plant Disease ◽  
2021 ◽  
Vol 105 (4) ◽  
pp. 1108-1114
Author(s):  
Travis R. Faske ◽  
Michael Emerson

The efficacy and timing of eight foliar fungicides to manage southern rust of corn (caused by Puccinia polysora Underwood) was investigated over 4 years in three field experiments. Each experiment consisted of one-, two-, or three-fungicide application timings at tassel, milk, or dent growth stages with quinone outside inhibitor (QoI), demethylation inhibitor (DMI), or QoI + DMI fungicides. Each year trace amounts of southern rust were observed in the field at tassel, except in 2018, when rust was not observed until physiological maturity. Southern rust severity on ear leaf and two leaves above the ear leaf was approximately 50, 35, 75, and 0% at dent in 2015, 2016, 2017, and 2018, respectively. Applications that contained a QoI or QoI + DMI fungicide provided greater southern rust control than DMI fungicides, with little variation within fungicide classes. Applications of QoI or QoI + DMI fungicides applied at tassel provided greater disease control (52.5%) than those applied at milk (5.8%) or dent (1.4%), and greater yield protection (40.4%) than those applied at milk (23.7%) or dent (2.6%) when final rust development was severe (>40%). When rust development increased later in the season, after milk growth stage, a trend of better disease control was observed with fungicides applied at milk (57.8%) compared with tassel (35.2%), but grain yield protection was similar, with an average yield protection of 7.4%. There was no yield benefit with fungicides applied in the absence of disease or at the dent growth stage. Southern rust was most effectively managed with QoI or QoI + DMI fungicides applied at tassel when southern rust was present and environmental conditions favored rust development.


Weed Science ◽  
1988 ◽  
Vol 36 (3) ◽  
pp. 345-353 ◽  
Author(s):  
Jeffery M. Higgins ◽  
Ted Whitwell ◽  
Edward C. Murdock ◽  
Joe E. Toler

Field experiments were conducted during 1985 and 1986 to determine the response of soybean [Glycine max(L.) Merr. ‘Coker 156’], pitted morningglory (Ipomoea lacunosaL. # IPOLA), and ivyleaf morningglory [Ipomoea hederacea(L.) Jacq. # IPOHE] to acifluorfen {5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid}, fomesafen {5-[2-chloro-4-(trifluoromethyl) phenoxy]-N-(methylsulfonyl)-2-nitrobenzamide}, and lactofen {(±)-2-ethoxy-1-methyl-2-oxoethyl-5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-dinitrobenzoate}. Acifluorfen and lactofen were more phytotoxic to soybean 15 days after treatment (DAT) than fomesafen. All herbicides at low rates controlled 80% or more pitted morningglory. However, only the high rates (0.6 kg ai/ha) of acifluorfen and fomesafen controlled 80% or more ivyleaf morningglory 90 DAT. Full-season competition from untreated pitted morningglory reduced soybean seed yields 44 and 22% in 1985 and 1986, respectively, compared to 58 and 49% with untreated ivyleaf morningglory. Soybean seed yields were higher in plots receiving acifluorfen or fomesafen applications than lactofen applications.


Sign in / Sign up

Export Citation Format

Share Document