scholarly journals Population Modeling Approach for Evaluating Leafy Spurge (Euphorbia esula) Development and Control

1988 ◽  
Vol 2 (2) ◽  
pp. 132-138 ◽  
Author(s):  
Bruce D. Maxwell ◽  
Mark V. Wilson ◽  
Steven R. Radosevich

Weed population models can serve as a framework to organize weed biology information and to develop weed control strategies. Models help to identify information gaps, to set research priorities, to develop hypotheses pertinent to weed population regulation, and to suggest control strategies. A population simulation model of leafy spurge (Euphorbia esulaL. # EPHES) was used to demonstrate the applicability of population models to weed science. Sensitivity analysis of an existing leafy spurge model indicated that transition from basal buds to vegetative shoots, survival of vegetative shoots, and survival of basal buds over winter were important transition parameters influencing population growth of this weed species. Possible mechanisms (intraspecific competition and environmental factors) that influence the transition from basal buds to vegetative shoots were shown. Intraspecific density effects on basal bud transition and production were included to show model refinement and second-generation model development. Four control strategies were simulated and were compared to field studies to show the predictive and management potential of the modeling approach. Simulations of population response to foliage feeding herbivores was highly correlated (r = 0.98) with field data for sheep grazing on leafy spurge. Simulation of picloram (4-amino-3,5,6-trichloro-2-pyridinecarboxylic acid) applied to leafy spurge also was correlated (r = 0.97) with field results.

1993 ◽  
Vol 7 (3) ◽  
pp. 763-770 ◽  
Author(s):  
Edward W. Stoller ◽  
Loyd M. Wax ◽  
David M. Alm

A survey determined the views of individuals in seven groups comprising the weed science community in the corn belt (primarily in Illinois) for importance of 8 environmental and 14 crop production issues and 16 weed species in setting weed science research priorities for the next 3 to 5 yr. The survey also considered if funding of research to solve these environmental and production issues should be from the private or public sector. Velvetleaf, foxtail species, and common lambsquarters were considered the top three weed species by all respondents, and each of these weeds was among the five most important weeds within each of the seven survey groups. Improving ground and surface water quality were the foremost environmental issues for all respondents, but soybean growers listed herbicide carryover as their top environmental concern. Reducing herbicide residues in food and developing sustainable practices were given low preference by all groups. Sustainable growers rated reducing herbicide carryover and minimizing applicator exposure as their lowest priorities. Among all respondents, the top three production issues were improved weed control in conservation tillage, more economical weed control, and improved integrated control strategies. Studying the biology/life cycles of weeds was the third highest production priority of University and U.S. Department of Agriculture (USDA) weed scientists, but was the last choice when averaged over the aggregate survey group. Developing strategies for resistant weeds and herbicide-resistant crops were chemical dealers top two priorities. Industry representatives gave the former subject their highest rating and the latter their lowest rating. Crop consultants seemed to want decision aids, as they chose assessing weed loss/thresholds and developing weed control/economic models among their top three production issues. Both corn and soybean growers desired more economical weed control as a first choice, while sustainable growers wanted improved cultural control strategies. Corn and soybean growers ranked developing new herbicides among their top three choices, but this issue was the lowest choice of the sustainable growers. University, USDA, and industrial weed scientists suggested that their own organizations conduct the research on their highest priorities issues.


Weed Science ◽  
2014 ◽  
Vol 62 (2) ◽  
pp. 321-325 ◽  
Author(s):  
Rodney G. Lym

Aminocyclopyrachlor has provided excellent control of many perennial weed species including leafy spurge, but control of yellow toadflax has been inconsistent.14C-aminocyclopyrachlor absorption was rapid in both leafy spurge and yellow toadflax and averaged 72% 48 h after treatment (HAT). However, translocation within the plant differed by species. More14C translocated to the aboveground portion of yellow toadflax (28% of applied) compared to leafy spurge (16.5% of applied). There was rapid translocation of14C-label to the roots of both species but more reached the belowground portion of leafy spurge than yellow toadflax. Over 12% of applied14C translocated into leafy spurge roots within 24 HAT but declined to 2% by 192 HAT. In comparison, only 2% of applied14C was found in yellow toadflax roots 24 HAT, and just 0.15% remained in belowground plant parts by 192 HAT. The inconsistent long-term control of yellow toadflax with aminocyclopyrachlor is likely due to poor translocation to the root system, which would allow for rapid regrowth in this hard to control perennial species.


Weed Science ◽  
1985 ◽  
Vol 33 (5) ◽  
pp. 724-726 ◽  
Author(s):  
Russell S. Moomaw ◽  
Alex R. Martin

A 4.6-m-long, segmented, flexible-pipe ropewick applicator was constructed to apply picloram (4-amino-3,5,6-trichloropicolinic acid) to leafy spurge (Euphorbia esulaL. ♯ EPHES) and other weed species. Gauge wheels on each ropewick applicator segment permit height adjustments, and a loose, independent, vertical flexing action permits the segments to effectively traverse depressed or raised areas. The applicator was designed for use in pastures with rough, uneven terrain where it is difficult to uniformly wipe herbicide solution on plants with a rigid-pipe ropewick. The applicator was found to be durable and effective in applying picloram to leafy spurge.


Pathogens ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 947
Author(s):  
Rishi Kondapaneni ◽  
Ashley N. Malcolm ◽  
Brian M. Vazquez ◽  
Eric Zeng ◽  
Tse-Yu Chen ◽  
...  

Florida lies within a subtropical region where the climate allows diverse mosquito species including invasive species to thrive year-round. As of 2021, there are currently 66 state-approved Florida Mosquito Control Districts, which are major stakeholders for Florida public universities engaged in mosquito research. Florida is one of the few states with extensive organized mosquito control programs. The Florida State Government and Florida Mosquito Control Districts have long histories of collaboration with research institutions. During fall 2020, we carried out a survey to collect baseline data on the current control priorities from Florida Mosquito Control Districts relating to (1) priority control species, (2) common adult and larval control methods, and (3) major research questions to address that will improve their control and surveillance programs. The survey data showed that a total of 17 distinct mosquito species were considered to be priority control targets, with many of these species being understudied. The most common control approaches included truck-mounted ultra-low-volume adulticiding and biopesticide-based larviciding. The districts held interest in diverse research questions, with many prioritizing studies on basic science questions to help develop evidence-based control strategies. Our data highlight the fact that mosquito control approaches and priorities differ greatly between districts and provide an important point of comparison for other regions investing in mosquito control, particularly those with similar ecological settings, and great diversity of potential mosquito vectors, such as in Florida. Our findings highlight a need for greater alignment of research priorities between mosquito control and mosquito research. In particular, we note a need to prioritize filling knowledge gaps relating to understudied mosquito species that have been implicated in arbovirus transmission.


Weed Science ◽  
1988 ◽  
Vol 36 (6) ◽  
pp. 784-786 ◽  
Author(s):  
Stephen J. Harvey ◽  
Robert M. Nowierski

The growth and development of leafy spurge (Euphorbia esulaL. #3EPHES) collected during postsenescent dormancy and grown in the greenhouse was increasingly stimulated by chilling treatments longer than 14 days duration at 0 to 6 C. Production of stems with flower buds, primary flowers, and secondary flowers was greater in plants chilled for 42 days or more. The effects of chilling on total number of stems, number of strictly vegetative stems, or number of stems with vegetative branching were not significant. The height of the tallest stem per pot was influenced by chilling longer than 42 days. Growth rate also increased as a function of chilling duration. Based on our findings, we believe that there is little possibility that any significant growth can occur in the postsenescent period because of the prevailing climatic conditions found in areas of leafy spurge distribution in North America.


Weeds ◽  
1956 ◽  
Vol 4 (3) ◽  
pp. 275 ◽  
Author(s):  
Duane Le Tourneau

2001 ◽  
Vol 37 (1) ◽  
pp. 37-51 ◽  
Author(s):  
E. KEBREAB ◽  
A. J. MURDOCH

A computer simulation model was developed to investigate strategies for control of the parasitic weed species of Orobanche. The model makes use of data from published literature and predicts infestation levels in a dynamic and deterministic way. It is predicted that sustainable control of the parasite can only be achieved by reducing the soil seed bank to levels of 1000–2000 seeds m−2 and maintaining it at that level in subsequent years. When cultural control methods such as hand weeding, trap/catch cropping, delayed planting, resistant cultivars and solarization were considered individually, a relatively high level of effectiveness was required to contain the soil seed bank. An integrated approach with a selection of appropriate cultural methods is therefore recommended for further testing and validation in the field. The simulations demonstrate the importance of preventing new seeds entering the soil seed bank and that although reducing the soil seed bank may not increase yield for the first few years, it will ultimately increase production.


Sign in / Sign up

Export Citation Format

Share Document