Mow-kill Regulation of Winter Cereals for Spring No-till Crop Production

1996 ◽  
Vol 10 (2) ◽  
pp. 247-252 ◽  
Author(s):  
Erik D. Wilkins ◽  
Robin R. Bellinder

Field studies determined the influence of developmental stage on mow-killing of winter wheat and rye. Both crops were clipped at either three or four different growth stages in 1992 and 1993. When mowed at first node, wheat biomass was 4350 and 1970 kg/ha in 1992 and 1993, respectively. At this stage, primary tiller apices were below 10 cm and regrowth was vigorous. Mowing prior to 75% heading consistently yielded more than 1000 kg/ha regrowth 8 wk later. Wheat cut after flowering produced 15 460 and 9160 kg/ha dry matter in 1992 and 1993, respectively, but less than 30 kg/ha total regrowth. At first and second node, rye produced 4440 and 1800 kg/ha biomass in 1992 and 1993. When mowed belore boot, more than 50% of the total rye biomass was due to regrowth. Rye mowed at boot yielded 6940 and 3740 kg/ha in 1992 and 1993 respectively, and regrowth measured 780 and 910 kg/ha 8 wk later. Mowing after flowering resulted in no measurable regrowth. Soil temperature and PAR were affected by mow-kill date and biomass. Biomass at first mowings (first and second node) in both wheat and rye reduced seasonal soil temperatures 3.5 C compared to bare soil temperatures; while biomass at kernal-filling lowered temperatures 6.0 C. Measured 8 wk after mowing, first node mowings absorbed between 55% and 70% PAR, while plants mowed at kernal-filling absorbed less than 5%.

2015 ◽  
Vol 12 (1) ◽  
pp. 23-30 ◽  
Author(s):  
C. Bertrand ◽  
L. González Sotelino ◽  
M. Journée

Abstract. Soil temperatures at various depths are unique parameters useful to describe both the surface energy processes and regional environmental and climate conditions. To provide soil temperature observation in different regions across Belgium for agricultural management as well as for climate research, soil temperatures are recorded in 13 of the 20 automated weather stations operated by the Royal Meteorological Institute (RMI) of Belgium. At each station, soil temperature can be measured at up to 5 different depths (from 5 to 100 cm) in addition to the bare soil and grass temperature records. Although many methods have been developed to identify erroneous air temperatures, little attention has been paid to quality control of soil temperature data. This contribution describes the newly developed semi-automatic quality control of 10-min soil temperatures data at RMI.


2021 ◽  
pp. 1-10
Author(s):  
X.M. Yang ◽  
W.D. Reynolds ◽  
C.F. Drury ◽  
M.D. Reeb

Although it is well established that soil temperature has substantial effects on the agri-environmental performance of crop production, little is known of soil temperatures under living cover crops. Consequently, soil temperatures under a crimson clover and white clover mix, hairy vetch, and red clover were measured for a cool, humid Brookston clay loam under a corn–soybean–winter wheat/cover crop rotation. Measurements were collected from August (after cover crop seeding) to the following May (before cover crop termination) at 15, 30, 45, and 60 cm depths during 2018–2019 and 2019–2020. Average soil temperatures (August–May) were not affected by cover crop species at any depth, or by air temperature at 60 cm depth. During winter, soil temperatures at 15, 30, and 45 cm depths were greater under cover crops than under a no cover crop control (CK), with maximum increase occurring at 15 cm on 31 January 2019 (2.5–5.7 °C) and on 23 January 2020 (0.8–1.9 °C). In spring, soil temperatures under standing cover crops were cooler than the CK by 0.1–3.0 °C at 15 cm depth, by 0–2.4 °C at the 30 and 45 cm depths, and by 0–1.8 °C at 60 cm depth. In addition, springtime soil temperature at 15 cm depth decreased by about 0.24 °C for every 1 Mg·ha−1 increase in live cover crop biomass. Relative to bare soil, cover crops increased near-surface soil temperature during winter but decreased near-surface soil temperature during spring. These temperature changes may have both positive and negative effects on the agri-environmental performance of crop production.


2021 ◽  
Vol 72 (2) ◽  
pp. 85
Author(s):  
Amber Gupta ◽  
Birendra Prasad Shaw

Salinity is one of the major abiotic stresses that lead to loss of billions of dollars in crop production worldwide. The growth of rice plant is severely affected and subsequently the yield is generally low in salt affected areas. Salinity affects rice primarily at the early vegetative stage by interfering with biochemical and physiological processes governing its growth and development. This review aims at summarising various morphological, physiological, biochemical, and molecular-based methods that are currently used in screening salt-tolerant rice genotypes at different growth stages with particular emphasis on screening of breeding lines, and also the effectiveness of these methods. Field and laboratory-based methods are described including visual screening of salt-induced injuries as per the IRRI’s standard evaluation system, salt-induced accumulation of ions, changes in the levels of photosynthetic pigments, antioxidant, and image-based visual quantification of injuries, and molecular markers-based screening, which are lengthy and cumbersome. Among these methods currently available, this review highlights IC50 (50% inhibition concentration) estimation of shoot growth inhibition as a rapid and accurate method that can differentiate genotypes with the IC50 difference of only a few mm NaCl for the initial screening of a large number of rice germplasm and breeding lines.


2021 ◽  
Author(s):  
Min Jiang ◽  
Shouli Xuan ◽  
Muhammad Atif Muneer ◽  
Bin Sun ◽  
Chunlin Shi ◽  
...  

2003 ◽  
Vol 2003 ◽  
pp. 193-193
Author(s):  
M. M. Moeini ◽  
M. Souri ◽  
F. Hozabri ◽  
M. R. Sanjabi

The nutritive values of animal feed are dependents on plant species, stages of maturity, harvesting and preparation methods. Legumes provide maximum yield, high forage quality (protein, mineral and digestible energy). Legumes decrease in protein and digestible dry matter and increase in fibre as they increase in growth or in maturity (Hochensmith et al., 1997). Alfalfa (medica sativa) is world unique forage in livestock food. This study was conducted to examine the chemical composition and nutrient digestibility of Hamadanian alfalfa forage at different growth stage on two local Iranian sheep and goat breeds.


2002 ◽  
Vol 50 (2) ◽  
pp. 179-184
Author(s):  
P. M. Arthanari ◽  
P. Gnanamoorthy ◽  
S. Ramasamy

Field experiments were conducted at Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India during the Rabi (November 1997-March 1998) and Kharif (July 1998-November 1998) seasons to identify the effect of silicon at panicle initiation on the growth of rice plant (Variety ADT-36) at different growth stages. Furnace slag was applied as a silicon source at 2 t/ha at the panicle initiation stage along with other nutrients. The dry matter production was recorded at the active tillering, panicle initiation, booting, flowering, one week after flowering and maturity stages in both the seasons. The total dry matter production was greater in the Kharif season than in the Rabi season. The application of slag at the panicle initiation stage along with N and K at the flowering stage had a significant influence over the dry matter production. A similar trend was observed in both the seasons. The silicon uptake was recorded at the panicle initiation and maturity stages. About 30-40% of the silicon absorbed during the early stages and the maturity stage was present in the shoot, whereas 20-30 % of the silicon absorbed during the maturity stages was present in the leaf blades. Based on the results, it is concluded that the supply of silicon during the panicle initiation stage is most important for plant growth.


1993 ◽  
Vol 73 (2) ◽  
pp. 411-419 ◽  
Author(s):  
Bruno J. Marty ◽  
Eduardo R. Chavez

The influence of different heat treatments for full-fat soybeans (FFSB) on digestible energy (DE) values and fecal nutrient digestibilities was studied using 180 castrated male Landrace pigs at three different growth stages: weaner (17.1 ± 0.2 kg), grower (32 ± 0.2 kg) and finisher (61.6 ± 0.3 kg). The soybean products used in weaner (30%), grower (25%) and finisher (20%) diets were soybean meal (SBM) or FFSB processed by either extrusion (Ex), jet sploding (Js), micronization (Mi) or roasting (Ro). Digestibilities were determined by total fecal collections during the last 7 d of each 12-d period. Dry matter (DM) and neutral detergent fiber (NDF) digestibilities of FFSB were lower (P < 0.05) in weaner than in grower or finisher pigs, but DE values and apparent digestibilities of crude protein (CP) and ether extract were not influenced by growth stage. Extruded FFSB had a superior CP digestibility than the other soybean products (86.4 vs. 79.8, 79.8, 80.0 and 78.2% for Js, Mi, Ro and SBM, respectively), and it also had a higher DE value (21.0 vs. 20.0, 19.6, 18.5 and 16.6 MJ DE kg−1 DM, P < 0.05). Extrusion of FFSB was most beneficial for weaner pigs as this heat treatment resulted in higher (P < 0.05) CP (87.8 vs. 80.9, 80.8, 82.1 and 76.6% for Js, Mi, Ro and SBM, respectively) and NDF (76.2 vs. 62.7, 63.3, 61.9 and 53.8% for Js, Mi, Ro and SBM, respectively) digestibilities. The heat treatments did not influence the CP and NDF digestibilities during grower or finisher stages. The data suggested that extrusion of FFSB yielded superior DE values and CP digestibilities than other heat treatments. Key words: Full-fat soybean products, extrusion, digestibility, pigs


2020 ◽  
Author(s):  
Utsala Shrestha ◽  
Bonnie H. Ownley ◽  
Alexander Bruce ◽  
Erin N. Rosskopf ◽  
David Michael Butler

A meta-analysis of anaerobic soil disinfestation (ASD) efficacy against Fusarium oxysporum (Fo) and Fo f. sp. lycopersici (Fol) was conducted emphasizing effects of environment and organic amendment characteristics, and pot and field studies conducted on ASD amendment C:N ratio and soil temperature effects on Fol inoculum survival. In a pot study, two organic amendments, dry molasses-based or wheat bran-based applied at 4 mg C/g soil, with 40:1, 30:1, 20:1, and 10:1 C:N ratios, were evaluated against Fol at 15-25°C. This was followed by a pot study at temperature regimes of 15-25°C and 25-35°C, and two C:N ratios (20:1 and 40:1), and a field study at 40:1, 30:1, 20:1, and 10:1 C:N ratios, 30:1 C:N ratio at lower C rate (2 mg C/g soil), and an anaerobic control. Soil temperature above 25°C, and more labile amendments, increased ASD suppression of Fo/Fol in the meta-analysis. In pot studies, Fol survival was reduced for molasses-based mixtures at 20:1 and 30:1 C:N ratios, compared to wheat bran-based, but not compared to the anaerobic control. At 25-35°C, all ASD treatments suppressed Fol relative to controls. In the field, all ASD treatments reduced Fol survival compared to the anaerobic control, and 4 mg C/g soil amendment rates induced increased anaerobic conditions and higher Fol mortality compared to the 2 mg C/g soil rate. While amendment C:N ratios from 10 to 40:1 were similarly suppressive of Fo, lower temperatures reduced ASD effectiveness against Fo/Fol and further work is warranted to enhance suppression at soil temperatures below 25°C.


1981 ◽  
Vol 97 (2) ◽  
pp. 383-389 ◽  
Author(s):  
I. S. Dahiya ◽  
R. S. Malik ◽  
Maharaj Singh

SummaryThe leaching behaviour of a highly saline-sodic, moderately permeable, sandy-loam soil was evaluated under continuous and intermittent submergence conditions in a longterm field study in the presence of rice and subsequent wheat and sesbania crops. Leaching curves with respect to both desalinization and desodification showed that leaching efficiency was considerably higher with intermittent than with continuous submergence. The curves were useful in determining the amount of leaching water needed for a given mode of water application to reduce harmful levels of salinity and sodicity to acceptable ones. Empirical equations were determined to fit the experimental data. Their comparison with another empirical equation from published bare-field data of this site showed that leaching efficiency under crops was higher than under fallow. From the desodification leaching curve, it is concluded that in reclamation of these soils there is no need of the application of any amendment like gypsum. The soil salinity and sodicity data recorded at different growth stages and crop yields showed that leaching during the rice growing season, under intermittent submergence without previous leaching, decreased salinity and sodicity throughout the top 100 cm of the soil to levels safe for the successful cultivation of rice and subsequently the relatively deep-rooted crops of wheat and sesbania.


Sign in / Sign up

Export Citation Format

Share Document