scholarly journals Experimental rabies infection in haematophagous bats Desmodus rotundus

2005 ◽  
Vol 133 (3) ◽  
pp. 523-527 ◽  
Author(s):  
M. F. ALMEIDA ◽  
L. F. A. MARTORELLI ◽  
C. C. AIRES ◽  
P. C. SALLUM ◽  
E. L. DURIGON ◽  
...  

In order to determine the susceptibility and serum neutralizing antibody response of Desmodus rotundus to rabies virus, bats were inoculated with a virus isolated from a naturally infected haematophagous bat. Bats were divided into four groups of 10 animals each. Dilutions of rabies virus containing 100, 1000, 10000 and 100000 MICLD50 (lethal dose 50% for mice inoculated by the intracerebral route) were administrated in the pectoral muscle. The presence of rabies virus was detected in brain and salivary glands by fluorescent antibody, mouse inoculation and RT–PCR. The observed mortality for each virus dose was 0, 20, 20 and 60% respectively. Serum neutralizing antibodies were tested for by the rapid fluorescent focus inhibition test, and antibody titres greater than 0·5 IU/ml were found in 53% of bats 30 days after virus inoculation. Resistance to infection was seen in bats that developed low or no detectable antibody response as well as in bats with high titres. Among the 10 bats that died of rabies, eight showed signs of paralytic rabies and two bats showed no clinical signs.

2020 ◽  
Vol 5 (1) ◽  
pp. 34 ◽  
Author(s):  
Elsa M. Cárdenas-Canales ◽  
Crystal M. Gigante ◽  
Lauren Greenberg ◽  
Andres Velasco-Villa ◽  
James A. Ellison ◽  
...  

We report mortality events in a group of 123 common vampire bats (Desmodus rotundus) captured in México and housed for a rabies vaccine efficacy study in Madison, Wisconsin. Bat mortalities occurred in México and Wisconsin, but rabies cases reported herein are only those that occurred after arrival in Madison (n = 15). Bats were confirmed positive for rabies virus (RABV) by the direct fluorescent antibody test. In accordance with previous reports, we observed long incubation periods (more than 100 days), variability in clinical signs prior to death, excretion of virus in saliva, and changes in rabies neutralizing antibody (rVNA) titers post-infection. We observed that the furious form of rabies (aggression, hyper-salivation, and hyper-excitability) manifested in three bats, which has not been reported in vampire bat studies since 1936. RABV was detected in saliva of 5/9 bats, 2–5 days prior to death, but was not detected in four of those bats that had been vaccinated shortly after exposure. Bats from different capture sites were involved in two separate outbreaks, and phylogenetic analysis revealed differences in the glycoprotein gene sequences of RABV isolated from each event, indicating that two different lineages were circulating separately during capture at each site.


Toxins ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 466 ◽  
Author(s):  
Reut Falach ◽  
Anita Sapoznikov ◽  
Ron Alcalay ◽  
Moshe Aftalion ◽  
Sharon Ehrlich ◽  
...  

Ricin, a highly lethal toxin derived from the seeds of Ricinus communis (castor beans) is considered a potential biological threat agent due to its high availability, ease of production, and to the lack of any approved medical countermeasure against ricin exposures. To date, the use of neutralizing antibodies is the most promising post-exposure treatment for ricin intoxication. The aim of this work was to generate anti-ricin antitoxin that confers high level post-exposure protection against ricin challenge. Due to safety issues regarding the usage of ricin holotoxin as an antigen, we generated an inactivated toxin that would reduce health risks for both the immunizer and the immunized animal. To this end, a monomerized ricin antigen was constructed by reducing highly purified ricin to its monomeric constituents. Preliminary immunizing experiments in rabbits indicated that this monomerized antigen is as effective as the native toxin in terms of neutralizing antibody elicitation and protection of mice against lethal ricin challenges. Characterization of the monomerized antigen demonstrated that the irreversibly detached A and B subunits retain catalytic and lectin activity, respectively, implying that the monomerization process did not significantly affect their overall structure. Toxicity studies revealed that the monomerized ricin displayed a 250-fold decreased activity in a cell culture-based functionality test, while clinical signs were undetectable in mice injected with this antigen. Immunization of a horse with the monomerized toxin was highly effective in elicitation of high titers of neutralizing antibodies. Due to the increased potential of IgG-derived adverse events, anti-ricin F(ab’)2 antitoxin was produced. The F(ab’)2-based antitoxin conferred high protection to intranasally ricin-intoxicated mice; ~60% and ~34% survival, when administered 24 and 48 h post exposure to a lethal dose, respectively. In line with the enhanced protection, anti-inflammatory and anti-edematous effects were measured in the antitoxin treated mice, in comparison to mice that were intoxicated but not treated. Accordingly, this anti-ricin preparation is an excellent candidate for post exposure treatment of ricin intoxications.


Author(s):  
Diana K. Meza ◽  
Alice Broos ◽  
Daniel J. Becker ◽  
Abdelkader Behdenna ◽  
Brian J. Willett ◽  
...  

SummarySerology is a core component of the surveillance and management of viral zoonoses. Virus neutralization tests are a gold standard serological diagnostic, but requirements for large volumes of serum and high biosafety containment can limit widespread use. Here, focusing on Rabies lyssavirus, a globally important zoonosis, we developed a pseudotype micro-neutralization rapid fluorescent focus inhibition test (pmRFFIT) that overcomes these limitations. Specifically, we adapted an existing micro-neutralization test to use a green fluorescent protein–tagged murine leukemia virus pseudotype in lieu of pathogenic rabies virus, reducing the need for specialized reagents for antigen detection and enabling use in low-containment laboratories. We further used statistical analysis to generate rapid, quantitative predictions of the probability and titer of rabies virus neutralizing antibodies from microscopic imaging of neutralization outcomes. Using 47 serum samples from domestic dogs with neutralizing antibody titers estimated using the fluorescent antibody virus neutralization test (FAVN), pmRFFIT showed moderate sensitivity (78.79%) and high specificity (84.62%). Despite small conflicts, titer predictions were correlated across tests repeated on different dates both for dog samples (r = 0.93), and for a second dataset of sera from wild common vampire bats (r = 0.72, N = 41), indicating repeatability. Our test uses a starting volume of 3.5 μL of serum, estimates titers from a single dilution of serum rather than requiring multiple dilutions and end point titration, and may be adapted to target neutralizing antibodies against alternative lyssavirus species. The pmRFFIT enables high-throughput detection of rabies virus neutralizing antibodies in low-biocontainment settings and is suited to studies in wild or captive animals where large serum volumes cannot be obtained.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nanda Kishore Routhu ◽  
Narayanaiah Cheedarla ◽  
Venkata Satish Bollimpelli ◽  
Sailaja Gangadhara ◽  
Venkata Viswanadh Edara ◽  
...  

AbstractThere is a great need for the development of vaccines that induce potent and long-lasting protective immunity against SARS-CoV-2. Multimeric display of the antigen combined with potent adjuvant can enhance the potency and longevity of the antibody response. The receptor binding domain (RBD) of the spike protein is a primary target of neutralizing antibodies. Here, we developed a trimeric form of the RBD and show that it induces a potent neutralizing antibody response against live virus with diverse effector functions and provides protection against SARS-CoV-2 challenge in mice and rhesus macaques. The trimeric form induces higher neutralizing antibody titer compared to monomer with as low as 1μg antigen dose. In mice, adjuvanting the protein with a TLR7/8 agonist formulation alum-3M-052 induces 100-fold higher neutralizing antibody titer and superior protection from infection compared to alum. SARS-CoV-2 infection causes significant loss of innate cells and pathology in the lung, and vaccination protects from changes in innate cells and lung pathology. These results demonstrate RBD trimer protein as a suitable candidate for vaccine against SARS-CoV-2.


2017 ◽  
Vol 91 (13) ◽  
Author(s):  
Normand Blais ◽  
Martin Gagné ◽  
Yoshitomo Hamuro ◽  
Patrick Rheault ◽  
Martine Boyer ◽  
...  

ABSTRACT The human respiratory syncytial virus (hRSV) fusion (F) protein is considered a major target of the neutralizing antibody response to hRSV. This glycoprotein undergoes a major structural shift from the prefusion (pre-F) to the postfusion (post-F) state at the time of virus-host cell membrane fusion. Recent evidences suggest that the pre-F state is a superior target for neutralizing antibodies compared to the post-F state. Therefore, for vaccine purposes, we have designed and characterized a recombinant hRSV F protein, called Pre-F-GCN4t, stabilized in a pre-F conformation. To show that Pre-F-GCN4t does not switch to a post-F conformation, it was compared with a recombinant post-F molecule, called Post-F-XC. Pre-F-GCN4t was glycosylated and trimeric and displayed a conformational stability different from that of Post-F-XC, as shown by chemical denaturation. Electron microscopy analysis suggested that Pre-F-GCN4t adopts a lollipop-like structure. In contrast, Post-F-XC had a typical elongated conical shape. Hydrogen/deuterium exchange mass spectrometry demonstrated that the two molecules had common rigid folding core and dynamic regions and provided structural insight for their biophysical and biochemical properties and reactivity. Pre-F-GCN4t was shown to deplete hRSV-neutralizing antibodies from human serum more efficiently than Post-F-XC. Importantly, Pre-F-GCN4t was also shown to bind D25, a highly potent monoclonal antibody specific for the pre-F conformation. In conclusion, this construct presents several pre-F characteristics, does not switch to the post-F conformation, and presents antigenic features required for a protective neutralizing antibody response. Therefore, Pre-F-GCN4t can be considered a promising candidate vaccine antigen. IMPORTANCE Human respiratory syncytial virus (RSV) is a global leading cause of infant mortality and adult morbidity. The development of a safe and efficacious RSV vaccine remains an important goal. The RSV class I fusion (F) glycoprotein is considered one of the most promising vaccine candidates, and recent evidences suggest that the prefusion (pre-F) state is a superior target for neutralizing antibodies. Our study presents the physicochemical characterization of Pre-F-GCN4t, a molecule designed to be stabilized in the pre-F conformation. To confirm its pre-F conformation, Pre-F-GCN4t was analyzed in parallel with Post-F-XC, a molecule in the post-F conformation. Our results show that Pre-F-GCN4t presents characteristics of a stabilized pre-F conformation and support its use as an RSV vaccine antigen. Such an antigen may represent a significant advance in the development of an RSV vaccine.


2020 ◽  
Vol 117 (42) ◽  
pp. 26382-26388 ◽  
Author(s):  
Angela M. Bosco-Lauth ◽  
Airn E. Hartwig ◽  
Stephanie M. Porter ◽  
Paul W. Gordy ◽  
Mary Nehring ◽  
...  

The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has reached nearly every country in the world with extraordinary person-to-person transmission. The most likely original source of the virus was spillover from an animal reservoir and subsequent adaptation to humans sometime during the winter of 2019 in Wuhan Province, China. Because of its genetic similarity to SARS-CoV-1, it is probable that this novel virus has a similar host range and receptor specificity. Due to concern for human–pet transmission, we investigated the susceptibility of domestic cats and dogs to infection and potential for infected cats to transmit to naive cats. We report that cats are highly susceptible to infection, with a prolonged period of oral and nasal viral shedding that is not accompanied by clinical signs, and are capable of direct contact transmission to other cats. These studies confirm that cats are susceptible to productive SARS-CoV-2 infection, but are unlikely to develop clinical disease. Further, we document that cats developed a robust neutralizing antibody response that prevented reinfection following a second viral challenge. Conversely, we found that dogs do not shed virus following infection but do seroconvert and mount an antiviral neutralizing antibody response. There is currently no evidence that cats or dogs play a significant role in human infection; however, reverse zoonosis is possible if infected owners expose their domestic pets to the virus during acute infection. Resistance to reinfection holds promise that a vaccine strategy may protect cats and, by extension, humans.


2001 ◽  
Vol 75 (6) ◽  
pp. 2803-2809 ◽  
Author(s):  
Andreas F. Kolb ◽  
Lecia Pewe ◽  
John Webster ◽  
Stanley Perlman ◽  
C. Bruce A. Whitelaw ◽  
...  

ABSTRACT Neutralizing antibodies represent a major host defense mechanism against viral infections. In mammals, passive immunity is provided by neutralizing antibodies passed to the offspring via the placenta or the milk as immunoglobulin G and secreted immunoglobulin A. With the long-term goal of producing virus-resistant livestock, we have generated mice carrying transgenes that encode the light and heavy chains of an antibody that is able to neutralize the neurotropic JHM strain of murine hepatitis virus (MHV-JHM). MHV-JHM causes acute encephalitis and acute and chronic demyelination in susceptible strains of mice and rats. Transgene expression was targeted to the lactating mammary gland by using the ovine β-lactoglobulin promoter. Milk from these transgenic mice contained up to 0.7 mg of recombinant antibody/ml. In vitro analysis of milk derived from different transgenic lines revealed a linear correlation between antibody expression and virus-neutralizing activity, indicating that the recombinant antibody is the major determinant of MHV-JHM neutralization in murine milk. Offspring of transgenic and control mice were challenged with a lethal dose of MHV-JHM. Litters suckling nontransgenic dams succumbed to fatal encephalitis, whereas litters suckling transgenic dams were fully protected against challenge, irrespective of whether they were transgenic. This demonstrates that a single neutralizing antibody expressed in the milk of transgenic mice is sufficient to completely protect suckling offspring against MHV-JHM-induced encephalitis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tybbysay P. Salinas ◽  
Jose L. Garrido ◽  
Jacqueline R. Salazar ◽  
Publio Gonzalez ◽  
Nicole Zambrano ◽  
...  

BackgroundNew World Hantaviruses (NWHs) are the etiological agent underlying hantavirus cardiopulmonary syndrome (HCPS), a severe respiratory disease with high mortality rates in humans. In Panama, infections with Choclo Orthohantavirus (CHOV) cause a much milder illness characterized by higher seroprevalence and lower mortality rates. To date, the cytokine profiles and antibody responses associated with this milder form of HCPS have not been defined. Therefore, in this study, we examined immune serological profiles associated with CHOV infections.MethodsFor this retrospective study, sera from fifteen individuals with acute CHOV-induced HCPS, were analyzed alongside sera from fifteen convalescent phase individuals and thirty-three asymptomatic, CHOV-seropositive individuals. Cytokine profiles were analyzed by multiplex immunoassay. Antibody subclasses, binding, and neutralization against CHOV-glycoprotein (CHOV-GP) were evaluated by ELISA, and flow cytometry.ResultsHigh titers of IFNγ, IL-4, IL-8, and IL-10 serum cytokines were found in the acute individuals. Elevated IL-4 serum levels were found in convalescent and asymptomatic seropositive individuals. High titers of IgG1 subclass were observed across the three cohorts analyzed. Neutralizing antibody response against CHOV-GP was detectable in few acute individuals but was strong in both convalescent and asymptomatic seropositive individuals.ConclusionA Th1/Th2 cytokine signature is characteristic during acute mild HCPS caused by CHOV infection. High expression of Th2 and IL-8 cytokines are correlated with clinical parameters in acute mild HCPS. In addition, a strong IL-4 signature is associated with different cohorts, including asymptomatic individuals. Furthermore, asymptomatic individuals presented high titers of neutralizing antibodies.


2019 ◽  
Vol 55 (2) ◽  
pp. 399 ◽  
Author(s):  
Kerri Pedersen ◽  
Amy T. Gilbert ◽  
Eric S. Wilhelm ◽  
Kathleen M. Nelson ◽  
Amy J. Davis ◽  
...  

2018 ◽  
Vol 115 (24) ◽  
pp. 6273-6278 ◽  
Author(s):  
Ilona Baraniak ◽  
Barbara Kropff ◽  
Lyn Ambrose ◽  
Megan McIntosh ◽  
Gary R. McLean ◽  
...  

Human cytomegalovirus (HCMV) is an important pathogen in transplant patients and in congenital infection. Previously, we demonstrated that vaccination with a recombinant viral glycoprotein B (gB)/MF59 adjuvant formulation before solid organ transplant reduced viral load parameters post transplant. Reduced posttransplant viremia was directly correlated with antibody titers against gB consistent with a humoral response against gB being important. Here we show that sera from the vaccinated seronegative patients displayed little evidence of a neutralizing antibody response against cell-free HCMV in vitro. Additionally, sera from seronegative vaccine recipients had minimal effect on the replication of a strain of HCMV engineered to be cell-associated in a viral spread assay. Furthermore, although natural infection can induce antibody-dependent cellular cytotoxicity (ADCC) responses, serological analysis of seronegative vaccinees again presented no evidence of a substantial ADCC-promoting antibody response being generated de novo. Finally, analyses for responses against major antigenic domains of gB following vaccination were variable, and their pattern was distinct compared with natural infection. Taken together, these data argue that the protective effect elicited by the gB vaccine is via a mechanism of action in seronegative vaccinees that cannot be explained by neutralization or the induction of ADCC. More generally, these data, which are derived from a human challenge model that demonstrated that the gB vaccine is protective, highlight the need for more sophisticated analyses of new HCMV vaccines over and above the quantification of an ability to induce potent neutralizing antibody responses in vitro.


Sign in / Sign up

Export Citation Format

Share Document