HIV drug resistance in newly diagnosed adults in a rural prefecture of eastern China

2014 ◽  
Vol 143 (3) ◽  
pp. 663-672 ◽  
Author(s):  
J. HUA ◽  
H. LIN ◽  
Y. DING ◽  
D. QIU ◽  
F. WONG ◽  
...  

SUMMARYLittle is known about HIV drug resistance (HIVDR) in newly diagnosed HIV-infected adults in eastern China where the HIV epidemic is spreading predominantly through sexual contact. During 2008–2011, newly HIV-diagnosed adults in Taizhou prefecture, Zhejiang province in eastern China were examined for HIVDR by amplifying and sequencing the HIV-1 pol gene. Of 447 genotyped participants, 53·7% were infected with CRF01_AE, 20·1% with CRF07_BC, 12·5% with subtype B, and 11·6% with CRF08_BC. Most of the participants had one or more minor genetic mutations in the pol gene that are associated with HIVDR. Twelve (2·7%) participants met the standard guidelines of having low to high HIVDR, suggesting that the prevalence of HIVDR in newly HIV-diagnosed adults was low in the study area and current antiretroviral therapy (ART) regimens are likely to remain effective. However, given high frequency of minor HIVDR in HIV patients and the scaling up of ART programmes in China, larger HIVDR surveillance programmes are needed.

2019 ◽  
Vol 17 (4) ◽  
pp. 225-239 ◽  
Author(s):  
Lulu Zuo ◽  
Ke Peng ◽  
Yihong Hu ◽  
Qinggang Xu

AIDS is a globalized infectious disease. In 2014, UNAIDS launched a global project of “90-90-90” to end the HIV epidemic by 2030. The second and third 90 require 90% of HIV-1 infected individuals receiving antiretroviral therapy (ART) and durable virological suppression. However, wide use of ART will greatly increase the emergence and spreading of HIV drug resistance and current HIV drug resistance test (DRT) assays in China are seriously lagging behind, hindering to achieve virological suppression. Therefore, recommending an appropriate HIV DRT method is critical for HIV routine surveillance and prevention in China. In this review, we summarized the current existing HIV drug resistance genotypic testing methods around the world and discussed the advantages and disadvantages of these methods.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhen Wang ◽  
Bin Zhao ◽  
Minghui An ◽  
Wei Song ◽  
Xue Dong ◽  
...  

Abstract Background To assess transmitted drug resistance (TDR) to tenofovir (TDF)/emtricitabine (FTC), using as pre-exposure prophylaxis, among newly diagnosed human immunodeficiency virus-1 (HIV-1)-infected residents in Shenyang city, northeast China. Methods Demographic and epidemiological information of all newly diagnosed HIV-1 infected residents in Shenyang city from 2016 to 2018 were anonymously collected from the local HIV epidemic database. HIV-1 pol sequences were amplified from RNA in cryopreserved plasma samples and sequenced directly. Viral subtypes were inferred with phylogenetic analysis and drug resistance mutations (DRMs) were determined according to the Stanford HIVdb algorithm. Recent HIV infection was determined with HIV Limiting Antigen avidity electro immunoassay. Results A total of 2176 sequences (92.4%, 2176/2354) were obtained; 70.9% (1536/2167) were CRF01_AE, followed by CRF07_BC (18.0%, 391/2167), subtype B (4.7%, 102/2167), other subtypes (2.6%, 56/2167), and unique recombinant forms (3.8%, 82/2167). The prevalence of TDR was 4.9% (107/2167), among which, only 0.6% (13/2167) was resistance to TDF/FTC. Most of these subjects had CRF01_AE strains (76.9%, 10/13), were unmarried (76.9%, 10/13), infected through homosexual contact (92.3%, 12/13), and over 30 years old (median age: 33). The TDF/FTC DRMs included K65R (8/13), M184I/V (5/13), and Y115F (2/13). Recent HIV infection accounted for only 23.1% (3/13). Most cases were sporadic in the phylogenetic tree, except two CRF01_AE sequences with K65R (Bootstrap value: 99%). Conclusions The prevalence of TDR to TDF/FTC is low among newly diagnosed HIV-infected cases in Shenyang, suggesting that TDR may have little impact on the protective effect of the ongoing CROPrEP project in Shenyang city.


2017 ◽  
Vol 4 (suppl_1) ◽  
pp. S424-S424
Author(s):  
Ioannis Demetriades

Abstract Background A molecular epidemiology study of HIV-1 infection was conducted in 100 HIV-1 diagnosed and untreated patients in Cyprus representing 65.4 percent of all the reported HIV-1 infections in Cyprus between 2010 and 2012. Methods Eighty-two patients were newly diagnosed (genotypic drug resistance testing within six months from diagnosis), and 18 patients were HIV-1 diagnosed for a longer period or the diagnosis date was unknown. Results Phylogenetic trees of the pol sequences obtained in this study with reference sequences indicated that subtypes B and A1 were the most common subtypes present and accounted for 41.0 and 19.0% respectively, followed by subtype C (7.0%), F1 (8.0%), CRF02_AG (4.0%), A2 (2.0%), other CRFs (7.0%) and unknown recombinant forms, URFs (12%). Most of newly-diagnosed study subjects were Cypriots (63%), males (78%) with median age 39 (Interquartile Range, IQR 33–48) reporting having sex with other men, MSM (51%). Conclusion A high rate of clustered transmission of subtype B drug-sensitive strains to reverse transcriptase and protease inhibitors was observed among MSM. Twenty-eight out of forty-one MSM study subjects (68.0%) infected were implicated in five transmission clusters, two of which are subtype A1 and three subtype B strains. The two largest MSM subtype B clusters included nine and eight Cypriot men, respectively, living in all major cities in Cyprus. There were only three newly diagnosed patients with transmitted drug resistant HIV-1 strains, one study subject from the United Kingdom infected with subtype B strain and one from Romania with subtype A2 strain, both with the PI drug resistance mutation M46L and one patient from Greece with subtype A1 strain with the NNRTI drug resistance mutation K103N. Disclosures All authors: No reported disclosures.


2020 ◽  
Author(s):  
Susana Posada-Céspedes ◽  
Gert Van Zyl ◽  
Hesam Montazeri ◽  
Jack Kuipers ◽  
Soo-Yon Rhee ◽  
...  

AbstractAlthough combination antiretoviral therapies seem to be effective at controlling HIV-1 infections regardless of the viral subtype, there is increasing evidence for subtype-specific drug resistance mutations. The order and rates at which resistance mutations accumulate in different subtypes also remain poorly understood. Here, we present a methodology for the comparison of mutational pathways in different HIV-1 subtypes, based on Hidden Conjunctive Bayesian Networks (H-CBN), a probabilistic model for inferring mutational pathways from cross-sectional genotype data. We introduce a Monte Carlo sampling scheme for learning H-CBN models on a large number of resistance mutations and develop a statistical test to assess differences in the inferred mutational pathways between two groups. We apply this method to the temporal progression of mutations conferring resistance to the protease inhibitor lopinavir in a large cross-sectional data set of South African individuals living with HIV-1 subtype C, as well as a genotype data set of subtype B infections derived from the Stanford HIV Drug Resistance Database and the Swiss HIV Cohort Study. We find strong support for different initial mutational events in the protease, namely at residue 46 in subtype B and at residue 82 in subtype C. Our results also show that mutations can accumulate along various alternative paths within subtypes, as opposed to a unique total temporal ordering. Furthermore, the maximum likelihood mutational networks for subtypes B and C share only 7 edges (Jaccard distance 0.802) and imply many different evolutionary pathways. Beyond HIV drug resistance, the statistical methodology is applicable more generally for the comparison of inferred mutational pathways between any two groups.Author summaryThere is a disparity in the distribution of infections by HIV-1 subtype in the world. Subtype B is predominant in America, Western Europe and Australia, and most therapeutic strategies are based on research and clinical studies on this subtype. However, non-B subtypes represent the majority of global HIV-1 infections; e.g., subtype C alone accounts for nearly half of all HIV-1 infections. We present a statistical framework enabling the comparison of patterns of accumulating mutations in different HIV-1 subtypes. Specifically, we study lopinavir resistance pathways in HIV-1 subtypes B versus C, but the methodology can be generally applied to compare the temporal ordering of genetic events in different subgroups.


2021 ◽  
Vol 17 (9) ◽  
pp. e1008363
Author(s):  
Susana Posada-Céspedes ◽  
Gert Van Zyl ◽  
Hesam Montazeri ◽  
Jack Kuipers ◽  
Soo-Yon Rhee ◽  
...  

Although combination antiretroviral therapies seem to be effective at controlling HIV-1 infections regardless of the viral subtype, there is increasing evidence for subtype-specific drug resistance mutations. The order and rates at which resistance mutations accumulate in different subtypes also remain poorly understood. Most of this knowledge is derived from studies of subtype B genotypes, despite not being the most abundant subtype worldwide. Here, we present a methodology for the comparison of mutational networks in different HIV-1 subtypes, based on Hidden Conjunctive Bayesian Networks (H-CBN), a probabilistic model for inferring mutational networks from cross-sectional genotype data. We introduce a Monte Carlo sampling scheme for learning H-CBN models for a larger number of resistance mutations and develop a statistical test to assess differences in the inferred mutational networks between two groups. We apply this method to infer the temporal progression of mutations conferring resistance to the protease inhibitor lopinavir in a large cross-sectional cohort of HIV-1 subtype C genotypes from South Africa, as well as to a data set of subtype B genotypes obtained from the Stanford HIV Drug Resistance Database and the Swiss HIV Cohort Study. We find strong support for different initial mutational events in the protease, namely at residue 46 in subtype B and at residue 82 in subtype C. The inferred mutational networks for subtype B versus C are significantly different sharing only five constraints on the order of accumulating mutations with mutation at residue 54 as the parental event. The results also suggest that mutations can accumulate along various alternative paths within subtypes, as opposed to a unique total temporal ordering. Beyond HIV drug resistance, the statistical methodology is applicable more generally for the comparison of inferred mutational networks between any two groups.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
S. Sinha ◽  
H. Ahmad ◽  
R. C. Shekhar ◽  
N. Kumar ◽  
L. Dar ◽  
...  

Objective. The increased use of antiretroviral therapy (ART) has reduced the morbidity and mortality associated with HIV, adversely leading to the emergence of HIV drug resistance (HIVDR). In this study we aim to evaluate the prevalence of HIVDR mutations in ART-naive HIV-1 infected patients from northern India.Design. Analysis was performed using Viroseq genotyping system based on sequencing of entire protease and two-thirds of the Reverse Transcriptase (RT) region ofpolgene.Results. Seventy three chronic HIV-1 infected ART naïve patients eligible for first line ART were enrolled from April 2006 to August 2008. In 68 patients DNA was successfully amplified and sequencing was done. 97% of HIV-1 strains belonged to subtype C, and one each to subtype A1 and subtype B. The overall prevalence of primary DRMs was 2.9% [2/68, 95% confidence interval (CI), 0.3%–10.2%]. One patient had a major RT mutation M184V, known to confer resistance to lamivudine, and another had a major protease inhibitor (PI) mutation D30N that imparts resistance to nelfinavir.Conclusion. Our study shows that primary HIVDR mutations have a prevalence of 2.9% among ART-naive chronic HIV-1 infected individuals.


2019 ◽  
Vol 5 (Supplement_1) ◽  
Author(s):  
J Fonager ◽  
T K Fischer

Abstract Transmission of HIV-1 resistance mutations among therapy-naïve patients impairs the efficiency of antiretroviral therapy (ART). Therefore, genotypic resistance testing of patients is recommended at baseline, as this both allows for the selection of the correct ART regimen and for surveillance of transmitted drug resistance mutations (TDRM) among therapy naive HIV-1 patients. In Denmark, the occurrence of TDRM in newly diagnosed and therapy naïve HIV-1 patients is monitored through the SERO project. Here, we investigated if the prevalence of TDRM differed between patients within and outside of phylogenetically identified transmission clusters. Samples from 1,227 newly diagnosed HIV-1 patients were sent along with epidemiological information to the Virological Surveillance and Research group at Statens Serum Institut. HIV-1 RNA extraction, RT-PCR and Sanger sequencing of the pol gene was performed using an in-house assay. The sequences were analyzed using BioNumerics v. 6.6 and manually checked for the presence of mixed mutations and analyzed for mutations using the HIVDB 8.4 algorithm implemented at the Stanford database. Sequence alignments were performed in Mafft, and phylogenetic analysis was performed using Mega 6.0 using the Maximum likelihood general time reversible model with 100 bootstrap replicates. Clusters were identified with ClusterPicker at default settings (cluster support = 90%, genetic distance 4.5%). Active clusters contained newly diagnosed patients from the 2015 to 2017 period. HIV-1 sequences from 588 patients belonged to one of 154 clusters, and sequences from 639 patients did not belong to a cluster. Patients in clusters were significantly more likely to be men who have sex with men and subtype B and significantly less likely to be late presenters (Fisher’s test P < 0.05). The TDRM prevalence was significantly higher for patients outside of clusters than within clusters, 16.6 per cent versus 12.1 per cent, respectively (Fisher’s test P < 0.05); however, no significant differences were found in the TDRM prevalence between the 75 active and 79 inactive clusters, nor between small (<3 patients) and large (≥3 patients) clusters. E138A, V179D, and K103N were the three most prevalent TDRMs for both patient groups, whereas M41L differed between them. In Denmark, the TDRM prevalence is lower within clusters than outside, indicating that TDRM cases are either imported and/or belong to yet unidentified clusters.


2020 ◽  
Vol 18 (3) ◽  
pp. 210-218
Author(s):  
Guolong Yu ◽  
Yan Li ◽  
Xuhe Huang ◽  
Pingping Zhou ◽  
Jin Yan ◽  
...  

Background: HIV-1 CRF55_01B was first reported in 2013. At present, no report is available regarding this new clade’s polymorphisms in its functionally critical regions protease and reverse transcriptase. Objective: To identify the diversity difference in protease and reverse transcriptase between CRF55_01B and its parental clades CRF01_AE and subtype B; and to investigate CRF55_01B’s drug resistance mutations associated with the protease inhibition and reverse transcriptase inhibition. Methods: HIV-1 RNA was extracted from plasma derived from a MSM population. The reverse transcription and nested PCR amplification were performed following our in-house PCR procedure. Genotyping and drug resistant-associated mutations and polymorphisms were identified based on polygenetic analyses and the usage of the HIV Drug Resistance Database, respectively. Results: A total of 9.24 % of the identified CRF55_01B sequences bear the primary drug resistance. CRF55_01B contains polymorphisms I13I/V, G16E and E35D that differ from those in CRF01_AE. Among the 11 polymorphisms in the RT region, seven were statistically different from CRF01_AE’s. Another three polymorphisms, R211K (98.3%), F214L (98.3%), and V245A/E (98.3 %.), were identified in the RT region and they all were statistically different with that of the subtype B. The V179E/D mutation, responsible for 100% potential low-level drug resistance, was found in all CRF55_01B sequences. Lastly, the phylogenetic analyses demonstrated 18 distinct clusters that account for 35% of the samples. Conclusions: CRF55_01B’s pol has different genetic diversity comparing to its counterpart in CRF55_01B’s parental clades. CRF55_01B has a high primary drug resistance presence and the V179E/D mutation may confer more vulnerability to drug resistance.


2021 ◽  
Vol 6 (1) ◽  
pp. 29
Author(s):  
Cruz S. Sebastião ◽  
Joana Morais ◽  
Miguel Brito

The increase in HIV infection and drug-resistant strains is an important public health concern, especially in resource-limited settings. However, the identification of factors related to the propagation of infectious diseases represents a crucial target offering an opportunity to reduce health care costs as well as deepening the focus on preventing infection in high-risk groups. In this study, we investigate the factors related to drug resistance among HIV-infected pregnant women in Luanda, the capital city of Angola. This was a part of a cross-sectional study conducted with 42 HIV-positive pregnant women. A blood sample was collected, and HIV-1 genotyping was carried out using an in-house method. Multivariate analyses were performed to determine the interaction between sociodemographic characteristics and drug resistance. HIV drug resistance was detected in 44.1% of the studied population. High probabilities of drug resistance were observed for HIV-infected pregnant women living in rural areas (AOR: 2.73; 95% CI: 0.50–14.9) with high educational level (AOR: 6.27; 95% CI: 0.77–51.2) and comorbidities (AOR: 5.47; 95% CI: 0.28–106) and infected with a HIV-1 non-B subtype other than subtype C (AOR: 1.60; 95% CI: 0.25–10.3). The present study reports high HIV drug resistance. Furthermore, older-age, rural areas, high educational levels, unemployed status, having comorbidities, and HIV-1 subtypes were factors related to drug resistance. These factors impact on drug susceptibility and need to be urgently addressed in order to promote health education campaigns able to prevent the spread of drug-resistant HIV strains in Angola.


2021 ◽  
Vol 22 (10) ◽  
pp. 5304
Author(s):  
Ana Santos-Pereira ◽  
Vera Triunfante ◽  
Pedro M. M. Araújo ◽  
Joana Martins ◽  
Helena Soares ◽  
...  

The success of antiretroviral treatment (ART) is threatened by the emergence of drug resistance mutations (DRM). Since Brazil presents the largest number of people living with HIV (PLWH) in South America we aimed at understanding the dynamics of DRM in this country. We analyzed a total of 20,226 HIV-1 sequences collected from PLWH undergoing ART between 2008–2017. Results show a mild decline of DRM over the years but an increase of the K65R reverse transcriptase mutation from 2.23% to 12.11%. This increase gradually occurred following alterations in the ART regimens replacing zidovudine (AZT) with tenofovir (TDF). PLWH harboring the K65R had significantly higher viral loads than those without this mutation (p < 0.001). Among the two most prevalent HIV-1 subtypes (B and C) there was a significant (p < 0.001) association of K65R with subtype C (11.26%) when compared with subtype B (9.27%). Nonetheless, evidence for K65R transmission in Brazil was found both for C and B subtypes. Additionally, artificial neural network-based immunoinformatic predictions suggest that K65R could enhance viral recognition by HLA-B27 that has relatively low prevalence in the Brazilian population. Overall, the results suggest that tenofovir-based regimens need to be carefully monitored particularly in settings with subtype C and specific HLA profiles.


Sign in / Sign up

Export Citation Format

Share Document