Retinal ganglion cell death induced by unilateral tectal ablation in Xenopus

1989 ◽  
Vol 2 (4) ◽  
pp. 339-347 ◽  
Author(s):  
Charles Straznicky ◽  
Roger McCart ◽  
Pál Tóth

AbstractThe survival of retinal ganglion cells (GCs) in the left eye was studied on retinal wholemounts from 2–33 weeks after the surgical removal of the right tectum in juvenile Xenopus. Two to five weeks after tectal removal, about 76% of neurons of the retinal ganglion cell (GC) layer showed signs of retrograde degeneration: swelling of their somata and chromatolysis. Neurons that were not affected by the operation were taken to be either displaced amacrine cells (DAs) or GCs not projecting to the tectum. A portion of GCs showing retrograde degeneration became pyknotic and died within the period of 2–16 weeks after operation. Counts of surviving GCs 20–33 weeks after tectal removal amounted to about 55% of the corresponding neuron number in the right intact retina of the same animal. No discernible GC loss was observed in animals where only the optic fibers were cut at their entry point to the tectum indicating that axotomy alone, followed by rapid regrowth to the target, does not adversely influence the survival of GCs. In long-surviving animals, the left optic nerve was exposed to cobaltic-lysine complex and the position of filled optic axons within the brain determined. Optic axons whose tectal target had been removed were seen to cross over to the left intact tectum via the posterior and pretectal commissures. Aberrant projections were detected to the ipsilateral tectum and the diencephalic periventricular grey in addition to an increased projection to the accessory optic nucleus. It is concluded that the removal of the tectum, the main target of optic fiber projection, induces a very substantial GC death. Since only a portion of optic fibers were able to grow to alternative targets, the surviving GCs may have also included those with main projection areas to the diencephalic visual centers.

2020 ◽  
Author(s):  
Camila Davison ◽  
Flavio R. Zolessi

ABSTRACTThe functional connection of the retina with the brain implies the extension of retinal ganglion cells axons through a long and tortuous path. Slit-Robo signaling has been implicated in axon growth and guidance in several steps of this journey. Here, we analyzed in detail the expression pattern of slit2 in zebrafish embryos by whole-mount fluorescent in situ hybridization, to extend previous work on this and other species. Major sites of expression are amacrine cells in the retina from 40 hpf, as well as earlier expression around the future optic nerve, anterior to the optic chiasm, two prominent cell groups in the anterior forebrain and the ventral midline of the caudal brain and spinal cord. To further characterize slit2 function in retinal axon growth and guidance, we generated and phenotypically characterized a null mutant for this gene, using CRISPR-Cas9 technology. Although no evident defects were found on intraretinal axon growth or in the formation of the optic tracts or tectal innervation, we observed very characteristic and robust impairment on axon fasciculation at the optic nerves and chiasm. The optic nerves appeared thicker and defasciculated only in maternal-zygotic mutants, while a very particular unilateral nerve-splitting phenotype was evident at the optic chiasm in a good proportion of both zygotic and maternal-zygotic mutants. Our results support the idea of a channeling role for Slit molecules in retinal ganglion cell axons at the optic nerve level, in addition to a function in the segregation of axons coming from each nerve at the optic chiasm.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Yuhong Fu ◽  
Ying Wang ◽  
Xinyuan Gao ◽  
Huiyao Li ◽  
Yue Yuan

Background. Diabetic retinopathy (DR) is a severe complication of diabetes mellitus. DR is considered as a neurovascular disease. Retinal ganglion cell (RGC) loss plays an important role in the vision function disorder of diabetic patients. Histone deacetylase3 (HDAC3) is closely related to injury repair and nerve regeneration. The correlation between HDAC3 and retinal ganglion cells in diabetic retinopathy is still unclear yet. Methods. To investigate the chronological sequence of the abnormalities of retinal ganglion cells in diabetic retinopathy, we choose 15 male db/db mice (aged 8 weeks, 12 weeks, 16 weeks, 18 weeks, and 25 weeks; each group had 3 mice) as diabetic groups and 3 male db/m mice (aged 8 weeks) as the control group. In this study, we examined the morphological and immunohistochemical changes of HDAC3, Caspase3, and LC3B in a sequential manner by characterizing the process of retinal ganglion cell variation. Results. Blood glucose levels and body weights of db/db mice were significantly higher than that of the control group, P<0.01. Compared with the control group, the number of retinal ganglion cells decreased with the duration of disease increasing. HDAC3 expression gradually increased in RGCs of db/db mice. Caspase3 expression gradually accelerated in RGCs of db/db mice. LC3B expression dynamically changed in RGCs of db/db mice. HDAC3 was positively correlated with Caspase3 expression (r=0.7424), P<0.01. HDAC3 was positively correlated with LC3B expression (r=0.7336), P<0.01. Discussion. We clarified the dynamic expression changes of HDAC3, Caspase3, and LC3B in retinal ganglion cells of db/db mice. Our results suggest the HDAC3 expression has a positive correlation with apoptosis and autophagy.


Development ◽  
1980 ◽  
Vol 55 (1) ◽  
pp. 77-92
Author(s):  
S. C. Sharma ◽  
J. G. Hollyfield

The specification of central connexions of retinal ganglion cells was studied in Xenopus laevis. In one series of experiments, the right eye primordium was rotated 180° at embryonic stages 24–32. In the other series, the left eye was transplanted into the right orbit, and vice versa, with either 0° or 180° rotation. After metamorphosis the visual projections from the operated eye to the contralateral optic tectum were mapped electrophysiologically and compared with the normal retinotectal map. In all cases the visual projection map was rotated through the same angle as was indicated by the position of the choroidal fissure. The left eye exchanged into the right orbit retained its original axes and projected to the contralateral tectum. These results suggest that retinal ganglion cell connexions are specified before stage 24.


2001 ◽  
Vol 18 (4) ◽  
pp. 559-570 ◽  
Author(s):  
B.E. REESE ◽  
M.A. RAVEN ◽  
K.A. GIANNOTTI ◽  
P.T. JOHNSON

The present study has examined the emergence of cholinergic stratification within the developing inner plexiform layer (IPL), and the effect of ablating the cholinergic amacrine cells on the formation of other stratifications within the IPL. The population of cholinergic amacrine cells in the ferret's retina was identified as early as the day of birth, but their processes did not form discrete strata until the end of the first postnatal week. As development proceeded over the next five postnatal weeks, so the positioning of the cholinergic strata shifted within the IPL toward the outer border, indicative of the greater ingrowth and elaboration of processes within the innermost parts of the IPL. To examine whether these cholinergic strata play an instructive role upon the development of other stratifications which form within the IPL, one-week-old ferrets were treated with l-glutamate in an attempt to ablate the population of cholinergic amacrine cells. Such treatment was shown to be successful, eliminating all of the cholinergic amacrine cells as well as the alpha retinal ganglion cells in the central retina. The remaining ganglion cell classes as well as a few other retinal cell types were partially reduced, while other cell types were not affected, and neither retinal histology nor areal growth was compromised in these ferrets. Despite this early loss of the cholinergic amacrine cells, which are eliminated within 24 h, other stratifications within the IPL formed normally, as they do following early elimination of the entire ganglion cell population. While these cholinergic amacrine cells are present well before other cell types have differentiated, apparently neither they, nor the ganglion cells, play a role in determining the depth of stratification for other retinal cell types.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Michal Geva ◽  
Noga Gershoni-Emek ◽  
Luana Naia ◽  
Philip Ly ◽  
Sandra Mota ◽  
...  

AbstractOptic neuropathies such as glaucoma are characterized by retinal ganglion cell (RGC) degeneration and death. The sigma-1 receptor (S1R) is an attractive target for treating optic neuropathies as it is highly expressed in RGCs, and its absence causes retinal degeneration. Activation of the S1R exerts neuroprotective effects in models of retinal degeneration. Pridopidine is a highly selective and potent S1R agonist in clinical development. We show that pridopidine exerts neuroprotection of retinal ganglion cells in two different rat models of glaucoma. Pridopidine strongly binds melanin, which is highly expressed in the retina. This feature of pridopidine has implications to its ocular distribution, bioavailability, and effective dose. Mitochondria dysfunction is a key contributor to retinal ganglion cell degeneration. Pridopidine rescues mitochondrial function via activation of the S1R, providing support for the potential mechanism driving its neuroprotective effect in retinal ganglion cells.


2019 ◽  
Vol 486 (2) ◽  
pp. 258-261
Author(s):  
L. E. Petrovskaya ◽  
M. V. Roshchin ◽  
G. R. Smirnova ◽  
D. E. Kolotova ◽  
P. M. Balaban ◽  
...  

For the purpose of optogenetic prosthetics of the receptive field of the retinal ganglion cell, we have created a bicistronic genetic construct that carries genes of excitatory (channelorhodopsin2) and inhibitory (anionic channelorhodopsin) rhodopsins. A distinctive feature of this construct is the combination of two genes into one construct with the mutant IRES inserted between them, which ensures precise ratio of the expression levels of the first and second gene in each transfected cell. It was found that the illumination of the central part of transfected neuron with light with a wavelength of 470 nm causes the generation of action potentials in the cell. At the same time, light stimulation of the periphery of the neuron causes cessation of the generation of action potentials. Thus, we were able to simulate the ON-OFF interaction of the receptive field of the retinal ganglion cell using optogenetic methods. Theoretically, this construction can be used for optogenetic prosthetics of degenerative retina in case of its delivery to ganglion cells using lentiviral vectors.


Development ◽  
2000 ◽  
Vol 127 (15) ◽  
pp. 3237-3247 ◽  
Author(s):  
W. Liu ◽  
S.L. Khare ◽  
X. Liang ◽  
M.A. Peters ◽  
X. Liu ◽  
...  

Targeted gene disruption studies in the mouse have demonstrated crucial roles for the Brn3 POU domain transcription factor genes, Brn3a, Brn3b, Brn3c (now called Pou4f1, Pou4f2, Pou4f3, respectively) in sensorineural development and survival. During mouse retinogenesis, the Brn3b gene is expressed in a large set of postmitotic ganglion cell precursors and is required for their early and terminal differentiation. In contrast, the Brn3a and Brn3c genes, which are expressed later in ganglion cells, appear to be dispensable for ganglion cell development. To understand the mechanism that causes the functional differences of Brn3 genes in retinal development, we employed a gain-of-function approach in the chick embryo. We find that Brn3b(l) and Brn3b(s), the two isoforms encoded by the Brn3b gene, as well as Brn3a and Brn3c all have similar DNA-binding and transactivating activities. We further find that the POU domain is minimally required for these activities. Consequently, we show that all these Brn3 proteins have a similar ability to promote development of ganglion cells when ectopically expressed in retinal progenitors. During chick retinogenesis, cBrn3c instead of cBrn3b exhibits a spatial and temporal expression pattern characteristic of ganglion cell genesis and its misexpression can also increase ganglion cell production. Based on these data, we propose that all Brn3 factors are capable of promoting retinal ganglion cell development, and that this potential may be limited by the order of expression in vivo.


2019 ◽  
Vol 1 (1) ◽  
Author(s):  
James R Tribble ◽  
Asta Vasalauskaite ◽  
Tony Redmond ◽  
Robert D Young ◽  
Shoaib Hassan ◽  
...  

Abstract Glaucoma is characterized by the progressive dysfunction and loss of retinal ganglion cells. However, the earliest degenerative events that occur in human glaucoma are relatively unknown. Work in animal models has demonstrated that retinal ganglion cell dendrites remodel and atrophy prior to the loss of the cell soma. Whether this occurs in human glaucoma has yet to be elucidated. Serial block face scanning electron microscopy is well established as a method to determine neuronal connectivity at high resolution but so far has only been performed in normal retina from animal models. To assess the structure–function relationship of early human glaucomatous neurodegeneration, regions of inner retina assessed to have none-to-moderate loss of retinal ganglion cell number were processed using serial block face scanning electron microscopy (n = 4 normal retinas, n = 4 glaucoma retinas). This allowed detailed 3D reconstruction of retinal ganglion cells and their intracellular components at a nanometre scale. In our datasets, retinal ganglion cell dendrites degenerate early in human glaucoma, with remodelling and redistribution of the mitochondria. We assessed the relationship between visual sensitivity and retinal ganglion cell density and discovered that this only partially conformed to predicted models of structure–function relationships, which may be affected by these early neurodegenerative changes. In this study, human glaucomatous retinal ganglion cells demonstrate compartmentalized degenerative changes as observed in animal models. Importantly, in these models, many of these changes have been demonstrated to be reversible, increasing the likelihood of translation to viable therapies for human glaucoma.


2019 ◽  
Vol 20 (17) ◽  
pp. 4110 ◽  
Author(s):  
Jose A. Fernández-Albarral ◽  
Ana I. Ramírez ◽  
Rosa de Hoz ◽  
Nerea López-Villarín ◽  
Elena Salobrar-García ◽  
...  

Glaucoma is a neurodegenerative disease characterized by the loss of retinal ganglion cells (RGCs). An increase in the intraocular pressure is the principal risk factor for such loss, but controlling this pressure does not always prevent glaucomatous damage. Activation of immune cells resident in the retina (microglia) may contribute to RGC death. Thus, a substance with anti-inflammatory activity may protect against RGC degeneration. This study investigated the neuroprotective and anti-inflammatory effects of a hydrophilic saffron extract standardized to 3% crocin content in a mouse model of unilateral, laser-induced ocular hypertension (OHT). Treatment with saffron extract decreased microglion numbers and morphological signs of their activation, including soma size and process retraction, both in OHT and in contralateral eyes. Saffron extract treatment also partially reversed OHT-induced down-regulation of P2RY12. In addition, the extract prevented retinal ganglion cell death in OHT eyes. Oral administration of saffron extract was able to decrease the neuroinflammation associated with increased intraocular pressure, preventing retinal ganglion cell death. Our findings indicate that saffron extract may exert a protective effect in glaucomatous pathology.


2020 ◽  
Vol 21 (5) ◽  
pp. 1570 ◽  
Author(s):  
Estrella Calvo ◽  
Santiago Milla-Navarro ◽  
Isabel Ortuño-Lizarán ◽  
Violeta Gómez-Vicente ◽  
Nicolás Cuenca ◽  
...  

Combined administration of N-Methyl-D-Aspartate (NMDA) and kainic acid (KA) on the inner retina was studied as a model of excitotoxicity. The right eye of C57BL6J mice was injected with 1 µL of PBS containing NMDA 30 mM and KA 10 mM. Only PBS was injected in the left eye. One week after intraocular injection, electroretinogram recordings and immunohistochemistry were performed on both eyes. Retinal ganglion cell (RGC) projections were studied by fluorescent-cholerotoxin anterograde labeling. A clear decrease of the retinal “b” wave amplitude, both in scotopic and photopic conditions, was observed in the eyes injected with NMDA/KA. No significant effect on the “a” wave amplitude was observed, indicating the preservation of photoreceptors. Immunocytochemical labeling showed no effects on the outer nuclear layer, but a significant thinning on the inner retinal layers, thus indicating that NMDA and KA induce a deleterious effect on bipolar, amacrine and ganglion cells. Anterograde tracing of the visual pathway after NMDA and KA injection showed the absence of RGC projections to the contralateral superior colliculus and lateral geniculate nucleus. We conclude that glutamate receptor agonists, NMDA and KA, induce a deleterious effect of the inner retina when injected together into the vitreous chamber.


Sign in / Sign up

Export Citation Format

Share Document