Modulation of cone to horizontal cell transmission by Calcium and pH in the fish retina

1993 ◽  
Vol 10 (1) ◽  
pp. 81-91 ◽  
Author(s):  
Krisztina Harsanyi ◽  
Stuart c. Mangel

AbstractThe effects of small changes in the calcium and sodium concentrations and in the pH of superfusion medium on the membrane potential and light-evoked responses of cone horizontal cells in the goldfish retina were examined. Conventional intracellular recording, a bicarbonate-based superfusion medium, and a specially designed superfusion apparatus that reduced pressure wave disturbances were used. An increase in the extracellular calcium concentration, [Ca2+]∘ from control levels (0.1 mM) to 1.0 mM hyperpolarized cone horizontal cells and reduced the magnitude of their light responses at all stimulus intensities. Addition of 20 mM NaCl to the 1.0 mM Ca2+ Ringer’s solution reversed the hyperpolarizing effect of the 1.0 mM Ca2+ but addition of 20 mM choline, a monovalent cation that does not pass through cyclic GMP-activated channels, did not. Reduction of the superfusate pH from 7.6 to 7.2 by switching from a Ringer’s solution gassed with 3% CO2 to one gassed with 10% CO2 hyperpolarized horizontal cells and reduced the magnitude of their light responses at all stimulus intensities for both 0.1 and 1.0 mM Ca,2+ Ringer’s solutions. An increase in pH to 8.2 by gassing the superfusate with 1% CO2 slightly depolarized the cells in 0.1 mM Ca2+ Ringer’s solution but slightly hyperpolarized the cells in the 1.0 mM Ca2+ Ringer’s solution. Following pharmacological isolation of the horizontal cells from synaptic input with high doses of glutamate (4–5 mM) and/or Co2+ (4 mM) treatment, no effect on horizontal cell membrane potential due to changes in pH or [Ca2+]∘ was observed. These findings are discussed with respect to the cellular mechanisms and sites of action in the outer retina that are affected by changes in pH∘ and [Ca2+]∘.

1987 ◽  
Vol 57 (3) ◽  
pp. 645-659 ◽  
Author(s):  
S. C. Massey ◽  
R. F. Miller

Intracellular recordings were obtained from horizontal cells in the superfused retina-eyecup preparation of the rabbit. Rod- and cone-dominated horizontal cells were studied using bath-applied excitatory amino acid analogues. Cone-dominated horizontal cell somas were depolarized by kainate (KA) or quisqualate (QQ) and their light responses were reduced or abolished. They were not affected by N-methyl-DL-aspartate (NMDLA) at concentrations up to 2 mM or by 2-amino-4-phosphonobutyrate (APB), a selective agonist for the ON bipolar cell. When synaptic transmission was blocked with cobalt, horizontal cell somas were hyperpolarized. Under these conditions, KA and QQ caused large depolarizations suggesting that these agents have a direct action on horizontal cell somas. Excitatory amino acid antagonists such as cis-2,3-piperidine dicarboxylic acid (PDA) and kynurenic acid (Kyn) hyperpolarized horizontal cell somas to the level of the light-driven membrane potential. These antagonists blocked both the light-driven responses and the depolarizing action of KA. The specific NMDA antagonist 2-amino-7-phosphonoheptanoate (AP-7) had no effect on the membrane potential or light-driven responses of horizontal cell somas. In contrast to a previous report, we found no evidence that low concentrations of NMDLA could hyperpolarize horizontal cells or act as a KA antagonist in the rabbit retina. Rod-dominated axon terminals were identified by waveform, threshold, and the presence of a large rod after-potential evoked by high light intensity. These cells were depolarized by KA and their light responses were attenuated. NMDLA and APB had no effect on these cells. The general antagonists, PDA and Kyn, hyperpolarized axon terminals and blocked their light-evoked responses. The specific NMDA antagonist, AP-7, had no effect on these cells. These results suggest that the synaptic receptors that mediate light input to both rod- and cone-dominated horizontal cells are kainate or quisqualate receptors. This implies that the rod and cone transmitters of the rabbit retina are similar, with the characteristics of an excitatory amino acid, such as glutamate.


1991 ◽  
Vol 66 (6) ◽  
pp. 1993-2001 ◽  
Author(s):  
S. Borges ◽  
M. Wilson

1. The effects of glycine on horizontal cells have been examined by microelectrode recording from superfused retinas isolated from the salamander. 2. Low concentrations of glycine (less than 50 microM) hyperpolarized horizontal cells and increased the magnitude of their light responses. Millimolar concentrations produced the opposite effect of depolarizing these cells and reducing their light response amplitudes. 3. In the presence of Co2+ and Mg2+ at concentrations sufficient to suppress the light response, millimolar glycine still exerted a depolarizing effect on horizontal cells, implying that this effect was largely a direct one on horizontal cell membranes. 4. Although both the rod and the cone contributions to horizontal cell light responses were reduced by millimolar glycine, rod input was reduced more, suggesting that millimolar glycine may also exert a presynaptic effect. 5. Strychnine (10 microns) antagonized the effects of millimolar glycine and, in the absence of exogenously applied glycine, caused horizontal cells to hyperpolarize and their light responses to increase in amplitude. This result implies that, in darkness, glycine is tonically released onto horizontal cells and maintains them in a state of partial depolarization. 6. The low-concentration effect of glycine was accompanied by an increased membrane resistance and receptive field size but no change in the balance of rod and cone input. 7. Low concentrations of glycine were often seen to cause a speeding of light responses, whereas high concentrations sometimes caused a slowing of response kinetics. Response kinetics were found to correlate with horizontal cell dark membrane potential so that, positive to -30 mV, depolarization slowed responses whereas kinetics at more negative values were largely independent of voltage.


1991 ◽  
Vol 66 (6) ◽  
pp. 2002-2013 ◽  
Author(s):  
T. A. Gilbertson ◽  
S. Borges ◽  
M. Wilson

1. Horizontal cells, identified by their morphology, were isolated from the salamander retina and examined in whole cell patch clamp. 2. All cells showed large outward currents activating positive to about -50 mV, and a minority of cells showed fast, tetrodotoxin-suppressible Na+ currents. Slow inward currents that might shape the light responses were never observed. 3. All cells showed conductance increases to both gamma-aminobutyric acid (GABA) and glycine that were completely blocked by bicuculline and strychnine, respectively. No cross-blocking by these antagonists was observed. Partial replacements of Cl- with large, impermeant anions indicated that both GABA- and glycine-evoked currents were carried by Cl- ions. 4. Responses to both GABA and glycine desensitized strongly with time constants of approximately 2 s. 5. Responses to glutamate were not enhanced by glycine. Similarly, responses to GABA were not enhanced by glutamate. 6. GABA-mediated synaptic interactions between horizontal cells may account for the changes in the kinetics of horizontal cell light responses seen when glycine is applied to the intact retina.


1999 ◽  
Vol 115 (1) ◽  
pp. 3-16 ◽  
Author(s):  
D.A. Kraaij ◽  
H. Spekreijse ◽  
M. Kamermans

Cones in the vertebrate retina project to horizontal and bipolar cells and the horizontal cells feedback negatively to cones. This organization forms the basis for the center/surround organization of the bipolar cells, a fundamental step in the visual signal processing. Although the surround responses of bipolar cells have been recorded on many occasions, surprisingly, the underlying surround-induced responses in cones are not easily detected. In this paper, the nature of the surround-induced responses in cones is studied. Horizontal cells feed back to cones by shifting the activation function of the calcium current in cones to more negative potentials. This shift increases the calcium influx, which increases the neurotransmitter release of the cone. In this paper, we will show that under certain conditions, in addition to this increase of neurotransmitter release, a calcium-dependent chloride current will be activated, which polarizes the cone membrane potential. The question is, whether the modulation of the calcium current or the polarization of the cone membrane potential is the major determinant for feedback-mediated responses in second-order neurons. Depolarizing light responses of biphasic horizontal cells are generated by feedback from monophasic horizontal cells to cones. It was found that niflumic acid blocks the feedback-induced depolarizing responses in cones, while the shift of the calcium current activation function and the depolarizing biphasic horizontal cell responses remain intact. This shows that horizontal cells can feed back to cones, without inducing major changes in the cone membrane potential. This makes the feedback synapse from horizontal cells to cones a unique synapse. Polarization of the presynaptic (horizontal) cell leads to calcium influx in the postsynaptic cell (cone), but due to the combined activity of the calcium current and the calcium-dependent chloride current, the membrane potential of the postsynaptic cell will be hardly modulated, whereas the output of the postsynaptic cell will be strongly modulated. Since no polarization of the postsynaptic cell is needed for these feedback-mediated responses, this mechanism of synaptic transmission can modulate the neurotransmitter release in single synaptic terminals without affecting the membrane potential of the entire cell.


1990 ◽  
Vol 5 (6) ◽  
pp. 571-583 ◽  
Author(s):  
Wallace B. Thoreson ◽  
Dwight A. Burkhardt

AbstractThe effects of synaptic blocking agents on the antagonistic surround of the receptive field of cone photoreceptors were studied intracellular recording in the retina of hte turtle (Pseudemys scripta elegans) Illumination of a cone's receptive-field surround typically evoked a hybriid depolarizing response composed of two componests: (1) the graded synaptic feedback depolarization and (2) the prolonged depolarization a distinctive, intrinsic response of the cone. The locus of action of synaptic blocking agents was analyzed by comparing their effects on the light-evoked response of horizontal cells, the hybrid cone depolarization evoked by surround illumination, and the pure prolonged depolarization evoked by intracellular current injection.The excitatory amino-acid antagonists, d-O-phosphoserine (DOS) and kynurenic acid (KynA), suppressed the light responses of horizontal cells and eliminated the surround-evoked, hybrid cone depolarization without affecting the prolonged depolarization evoked by current injection. Cobalt at 5–10 mM suppressed horizontal cell responses and thereby eliminated surround-evoked cone depolarizations. Cobalt (5–10 mM) also blocked the current-evoked prolonged depolarization, suggesting that the intrinsic cone mechanisms responsible for the prolonged depolarization are likely to be calcium-dependent.Various GABA agonists and antagonists were found to have no effect on the surround-evoked depolarizations of cones. In contrast, a very low concentration of cobalt (0.5 mM) selectively suppressed the light-evoked feedback depolarization of cones without affecting horizontal cell responses or the current-evoked prolonged depolarization. Cobalt at 0.5 mM thus blocks the light-evoked action of the cone feedback synapse while sparing feedforward synaptic transmission from cones to horizontal cells. The implications of the present work for the possible neurotransmitters used at these synapses is discussed.


1999 ◽  
Vol 16 (5) ◽  
pp. 967-979 ◽  
Author(s):  
XIONG-LI YANG ◽  
FAN GAO ◽  
SAMUEL M. WU

The physiological function of GABA transporters and GABA receptors in retinal horizontal cells (HCs) under dark- and light-adapted conditions were studied by whole-cell voltage clamp and intracellular recording techniques in retinal slices and whole-mounted isolated retinas of the larval tiger salamander. Puff application of GABA in picrotoxin elicited a NO-711 (a potent GABA transporter blocker)-sensitive inward current that did not exhibit a reversal potential in the physiological range, consistent with the idea that these HCs contain electrogenic GABA transporters. Application of GABA in NO-711 elicited a chloride current in HCs; about half of the current was suppressed by bicuculline or I4AA (a GABAC receptor antagonist), and the remaining half was suppressed by bicuculline + I4AA or picrotoxin. In whole-mount retinas, NO-711, bicuculline, I4AA, or picrotoxin hyperpolarized the HCs and enhanced the light responses under dark-adapted conditions, and blocked the time-dependent recovery of HC membrane potential and light responses during background illumination. Based on the parallel conductance model, GABA released in darkness mediates a chloride conductance about three times greater than the leak conductance or the glutamate-gated cation conductance. About half of this chloride conductance is mediated by GABAA receptors, and the other half is mediated by GABAC receptors. These results suggest that GABA released from HCs through the NO-711-sensitive GABA transporters activates GABAA and GABAC receptors, resulting in chloride conductance increase which leads to a HC depolarization and reduction of the light response. Additionally, GABA transporters also mediate GABA release in background light that is responsible for the recovery of HC membrane potential and light responses.


1998 ◽  
Vol 15 (2) ◽  
pp. 263-271 ◽  
Author(s):  
WILLIAM A. HARE ◽  
W. GEOFFREY OWEN

Electrophysiological studies of the isolated retina involve perfusing the tissue with a physiological Ringer's. Organic pH buffers such as HEPES have become increasingly popular in recent years because for many purposes they offer a convenient and reliable alternative to the more traditional bicarbonate/CO2. In this paper, however, we report that important functional properties of rods, bipolar cells, and horizontal cells in the salamander, Ambystoma tigrinum, are sensitive to the choice of buffer and, in the case of horizontal cells, that sensitivity is acute. In bicarbonate/CO2 Ringer's, the dark potential of the horizontal cell was typically near −50 mV and saturating light caused it to hyperpolarize to about −75 mV. On switching to HEPES-buffered Ringer's at the same pH, horizontal cells depolarized in darkness to about −20 mV, close to the chloride equilibrium potential, and the kinetics of their light responses changed. The cone-driven components of light responses increased in size relative to rod-driven components. Saturating lights still hyperpolarized the cells to −75 mV, however. Horizontal cells, being coupled via gap junctions, form a syncytium and syncytial length constants, measured in bicarbonate/CO2 Ringer's, were generally in the range 150–225 μm. On switching to HEPES-buffered Ringer's, length constants increased substantially to 250–330 μm. All these changes were reversible. We discuss our findings within the context of the cell's ability to regulate its internal pH.


1992 ◽  
Vol 8 (3) ◽  
pp. 213-218 ◽  
Author(s):  
Stuart C. Mangel ◽  
William J. Brunken

AbstractWe have investigated the effects of a serotonin 5-HT2 antagonist and a 5-HTIA agonist on horizontal and ganglion cells in the rabbit retina. Simultaneous intracellular horizontal cell and extracellular ganglion cell recordings were obtained from a superfused in vitro rabbit eyecup preparation and the effects of bath applied drugs on these cells' light responses observed. Sinusoidally modulated current was also injected into horizontal cells while the extracellular spike activity of nearby, single-unit ganglion cells was monitored. Although the ON components of the light-evoked responses of ganglion cells were reduced by the 5-HT2 antagonist or the 5-HTIA agonist, the membrane potential and the light responses of horizontal cells and the 6-wave of the ERG were simultaneously unaffected. However, the drugs blocked current-driven ganglion cell spike activity induced by current injections into nearby horizontal cells. These results are discussed with respect to the site of action of these serotonin drugs and with respect to the circuitry of serotonergic neurons.


1999 ◽  
Vol 114 (4) ◽  
pp. 511-524 ◽  
Author(s):  
I. Fahrenfort ◽  
R.L. Habets ◽  
H. Spekreijse ◽  
M. Kamermans

Processing of visual stimuli by the retina changes strongly during light/dark adaptation. These changes are due to both local photoreceptor-based processes and to changes in the retinal network. The feedback pathway from horizontal cells to cones is known to be one of the pathways that is modulated strongly during adaptation. Although this phenomenon is well described, the mechanism for this change is poorly characterized. The aim of this paper is to describe the mechanism for the increase in efficiency of the feedback synapse from horizontal cells to cones. We show that a train of flashes can increase the feedback response from the horizontal cells, as measured in the cones, up to threefold. This process has a time constant of ∼3 s and can be attributed to processes intrinsic to the cones. It does not require dopamine, is not the result of changes in the kinetics of the cone light response and is not due to changes in horizontal cells themselves. During a flash train, cones adapt to the mean light intensity, resulting in a slight (4 mV) depolarization of the cones. The time constant of this depolarization is ∼3 s. We will show that at this depolarized membrane potential, a light-induced change of the cone membrane potential induces a larger change in the calcium current than in the unadapted condition. Furthermore, we will show that negative feedback from horizontal cells to cones can modulate the calcium current more efficiently at this depolarized cone membrane potential. The change in horizontal cell response properties during the train of flashes can be fully attributed to these changes in the synaptic efficiency. Since feedback has major consequences for the dynamic, spatial, and spectral processing, the described mechanism might be very important to optimize the retina for ambient light conditions.


2007 ◽  
Vol 24 (3) ◽  
pp. 333-344 ◽  
Author(s):  
CHRISTOPHE RIBELAYGA ◽  
STUART C. MANGEL

Horizontal cells are second order neurons that receive direct synaptic input from photoreceptors. In teleosts horizontal cells can be divided into two categories, cone-connected and rod-connected. Although the anatomy and physiology of fish cone horizontal cells have been extensively investigated, less is known about rod horizontal cells. This study was undertaken to determine whether light and/or the circadian clock regulate gap junctional coupling between goldfish rod horizontal cells. We used fine-tipped, microelectrode intracellular recording to monitor rod horizontal cells under various visual stimulation conditions, and tracer (biocytin) iontophoresis to visualize their morphology and evaluate the extent of coupling. Under dark-adapted conditions, rod horizontal cells were extensively coupled to cells of like-type (homologous coupling) with an average of ∼120 cells coupled. Under these conditions, no differences were observed between day, night, the subjective day, and subjective night. In addition, under dark-adapted conditions, application of the dopamine D2-like agonist quinpirole (1 μM), the D2-like antagonist spiperone (10 μM), or the D1-like antagonist SCH23390 (10 μM) had no effect on rod horizontal cell tracer coupling. In contrast, the extent of tracer coupling was reduced by ∼90% following repetitive light (photopic range) stimulation of the retina or application of the D1-agonist SKF38393 (10 μM) during the subjective day and night. We conclude that similarly to cone horizontal cells, rod horizontal cells are extensively coupled to one another in darkness and that the extent of coupling is dramatically reduced by bright light stimulation or dopamine D1-receptor activation. However, in contrast to cone horizontal cells whose light responses are under the control of the retinal clock, the light responses of rod horizontal cells under dark-adapted conditions were similar during the day, night, subjective day, and subjective night thus demonstrating that they are not under the influence of the circadian clock.


Sign in / Sign up

Export Citation Format

Share Document