Discovery of the first known benthic invasive species in the Southern Ocean: the North Atlantic spider crab Hyas araneus found in the Antarctic Peninsula

2004 ◽  
Vol 16 (2) ◽  
pp. 129-131 ◽  
Author(s):  
MARCOS TAVARES ◽  
GUSTAVO A. S. DE MELO

The Southern Ocean around Antarctica is no longer free from invasive marine species. The North Atlantic spider crab Hyas araneus (Linnaeus, 1758) (Crustacea: Decapoda: Majidae) has been recorded for the first time from the Antarctic Peninsula. Isolated for at least 25 million years, the endemic Antarctic Southern Ocean marine fauna is now being exposed to human-mediated influx of exotic species. Invasive species and polar warming combined can foster the probability of arrival and colonization by non-indigenous species, with unpredictable consequences for the Antarctic marine biota.

2007 ◽  
Vol 20 (3) ◽  
pp. 436-448 ◽  
Author(s):  
Ronald J. Stouffer ◽  
Dan Seidov ◽  
Bernd J. Haupt

Abstract The response of an atmosphere–ocean general circulation model (AOGCM) to perturbations of freshwater fluxes across the sea surface in the North Atlantic and Southern Ocean is investigated. The purpose of this study is to investigate aspects of the so-called bipolar seesaw where one hemisphere warms and the other cools and vice versa due to changes in the ocean meridional overturning. The experimental design is idealized where 1 Sv (1 Sv ≡ 106 m3 s−1) of freshwater is added to the ocean surface for 100 model years and then removed. In one case, the freshwater perturbation is located in the Atlantic Ocean from 50° to 70°N. In the second case, it is located south of 60°S in the Southern Ocean. In the case where the North Atlantic surface waters are freshened, the Atlantic thermohaline circulation (THC) and associated northward oceanic heat transport weaken. In the Antarctic surface freshening case, the Atlantic THC is mainly unchanged with a slight weakening toward the end of the integration. This weakening is associated with the spreading of the fresh sea surface anomaly from the Southern Ocean into the rest of the World Ocean. There are two mechanisms that may be responsible for such weakening of the Atlantic THC. First is that the sea surface salinity (SSS) contrast between the North Atlantic and North Pacific is reduced. And, second, when freshwater from the Southern Ocean reaches the high latitudes of the North Atlantic Ocean, it hinders the sinking of the surface waters, leading to the weakening of the THC. The spreading of the fresh SSS anomaly from the Southern Ocean into the surface waters worldwide was not seen in earlier experiments. Given the geography and climatology of the Southern Hemisphere where the climatological surface winds push the surface waters northward away from the Antarctic continent, it seems likely that the spreading of the fresh surface water anomaly could occur in the real world. A remarkable symmetry between the two freshwater perturbation experiments in the surface air temperature (SAT) response can be seen. In both cases, the hemisphere with the freshwater perturbation cools, while the opposite hemisphere warms slightly. In the zonally averaged SAT figures, both the magnitude and the pattern of the anomalies look similar between the two cases. The oceanic response, on the other hand, is very different for the two freshwater cases, as noted above for the spreading of the SSS anomaly and the associated THC response. If the differences between the atmospheric and oceanic responses apply to the real world, then the interpretation of paleodata may need to be revisited. To arrive at a correct interpretation, it matters whether or not the evidence is mainly of atmospheric or oceanic origin. Also, given the sensitivity of the results to the exact details of the freshwater perturbation locations, especially in the Southern Hemisphere, a more realistic scenario must be constructed to explore these questions.


2018 ◽  
Vol 601 ◽  
pp. 109-126 ◽  
Author(s):  
N McGinty ◽  
AD Barton ◽  
NR Record ◽  
ZV Finkel ◽  
AJ Irwin

2020 ◽  
Vol 33 (6) ◽  
pp. 2111-2130
Author(s):  
Woo Geun Cheon ◽  
Jong-Seong Kug

AbstractIn the framework of a sea ice–ocean general circulation model coupled to an energy balance atmospheric model, an intensity oscillation of Southern Hemisphere (SH) westerly winds affects the global ocean circulation via not only the buoyancy-driven teleconnection (BDT) mode but also the Ekman-driven teleconnection (EDT) mode. The BDT mode is activated by the SH air–sea ice–ocean interactions such as polynyas and oceanic convection. The ensuing variation in the Antarctic meridional overturning circulation (MOC) that is indicative of the Antarctic Bottom Water (AABW) formation exerts a significant influence on the abyssal circulation of the globe, particularly the Pacific. This controls the bipolar seesaw balance between deep and bottom waters at the equator. The EDT mode controlled by northward Ekman transport under the oscillating SH westerly winds generates a signal that propagates northward along the upper ocean and passes through the equator. The variation in the western boundary current (WBC) is much stronger in the North Atlantic than in the North Pacific, which appears to be associated with the relatively strong and persistent Mindanao Current (i.e., the southward flowing WBC of the North Pacific tropical gyre). The North Atlantic Deep Water (NADW) formation is controlled by salt advected northward by the North Atlantic WBC.


2021 ◽  
Author(s):  
Paridhi Rustogi ◽  
Peter Landschuetzer ◽  
Sebastian Brune ◽  
Johanna Baehr

<p>Understanding the variability and drivers of air-sea CO<span><sub>2</sub></span> fluxes on seasonal timescales is critical for resolving the ocean carbon sink's evolution and variability. Here, we investigate whether discrepancies in the representation of air-sea CO<span><sub>2</sub></span> fluxes on a seasonal timescale accumulate to influence the representation of CO<span><sub>2</sub></span> fluxes on an interannual timescale in two important ocean CO<span><sub>2 </sub></span>sink regions – the North Atlantic basin and the Southern Ocean. Using an observation-based product (SOM-FFN) as a reference, we investigate the representation of air-sea CO<span><sub>2</sub></span> fluxes in the Max Planck Institute's Earth System Model Grand Ensemble (MPI-ESM GE). Additionally, we include a simulation based on the same model configuration, where observational data from the atmosphere and ocean components is assimilated (EnKF assimilation) to verify if the inclusion of observational data alters the model state significantly and if the updated modelled CO<span><sub>2 </sub></span>flux values better represent observations.</p><p>We find agreement between all three observation-based and model products on an interannual timescale for the North Atlantic basin. However, the agreement on a seasonal timescale is inconsistent with discrepancies as large as 0.26 PgC/yr in boreal autumn in the North Atlantic. In the Southern Ocean, we find little agreement between the three products on an interannual basis with significant seasonal discrepancies as large as 1.71 PgC/yr in austral winter. However, while we identify regional patterns of dominating seasonal variability in MPI-GE and EnKF, we find that the SOM-FFN cannot demonstrate robust conclusions on the relevance of seasonal variability in the Southern Ocean. In turn, we cannot pin down the problems for this region.</p>


2013 ◽  
Vol 9 (2) ◽  
pp. 935-953 ◽  
Author(s):  
M. Kageyama ◽  
U. Merkel ◽  
B. Otto-Bliesner ◽  
M. Prange ◽  
A. Abe-Ouchi ◽  
...  

Abstract. Fresh water hosing simulations, in which a fresh water flux is imposed in the North Atlantic to force fluctuations of the Atlantic Meridional Overturning Circulation, have been routinely performed, first to study the climatic signature of different states of this circulation, then, under present or future conditions, to investigate the potential impact of a partial melting of the Greenland ice sheet. The most compelling examples of climatic changes potentially related to AMOC abrupt variations, however, are found in high resolution palaeo-records from around the globe for the last glacial period. To study those more specifically, more and more fresh water hosing experiments have been performed under glacial conditions in the recent years. Here we compare an ensemble constituted by 11 such simulations run with 6 different climate models. All simulations follow a slightly different design, but are sufficiently close in their design to be compared. They all study the impact of a fresh water hosing imposed in the extra-tropical North Atlantic. Common features in the model responses to hosing are the cooling over the North Atlantic, extending along the sub-tropical gyre in the tropical North Atlantic, the southward shift of the Atlantic ITCZ and the weakening of the African and Indian monsoons. On the other hand, the expression of the bipolar see-saw, i.e., warming in the Southern Hemisphere, differs from model to model, with some restricting it to the South Atlantic and specific regions of the southern ocean while others simulate a widespread southern ocean warming. The relationships between the features common to most models, i.e., climate changes over the north and tropical Atlantic, African and Asian monsoon regions, are further quantified. These suggest a tight correlation between the temperature and precipitation changes over the extra-tropical North Atlantic, but different pathways for the teleconnections between the AMOC/North Atlantic region and the African and Indian monsoon regions.


2018 ◽  
Vol 31 (18) ◽  
pp. 7459-7479 ◽  
Author(s):  
Jia-Rui Shi ◽  
Shang-Ping Xie ◽  
Lynne D. Talley

Ocean uptake of anthropogenic heat over the past 15 years has mostly occurred in the Southern Ocean, based on Argo float observations. This agrees with historical simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5), where the Southern Ocean (south of 30°S) accounts for 72% ± 28% of global heat uptake, while the contribution from the North Atlantic north of 30°N is only 6%. Aerosols preferentially cool the Northern Hemisphere, and the effect on surface heat flux over the subpolar North Atlantic opposes the greenhouse gas (GHG) effect in nearly equal magnitude. This heat uptake compensation is associated with weakening (strengthening) of the Atlantic meridional overturning circulation (AMOC) in response to GHG (aerosol) radiative forcing. Aerosols are projected to decline in the near future, reinforcing the greenhouse effect on the North Atlantic heat uptake. As a result, the Southern Ocean, which will continue to take up anthropogenic heat largely through the mean upwelling of water from depth, will be joined by increased relative contribution from the North Atlantic because of substantial AMOC slowdown in the twenty-first century. In the RCP8.5 scenario, the percentage contribution to global uptake is projected to decrease to 48% ± 8% in the Southern Ocean and increase to 26% ± 6% in the northern North Atlantic. Despite the large uncertainty in the magnitude of projected aerosol forcing, our results suggest that anthropogenic aerosols, given their geographic distributions and temporal trajectories, strongly influence the high-latitude ocean heat uptake and interhemispheric asymmetry through AMOC change.


Zootaxa ◽  
2012 ◽  
Vol 3542 (1) ◽  
pp. 69 ◽  
Author(s):  
DANIEL ROCCATAGLIATA ◽  
UTE MÜHLENHARDT-SIEGEL

Based on two specimens collected in the Antarctic deep-sea (4928 m) the adult female and male of the genusPseudolamprops Gamô, 1989 are described for the first time. A new combination is proposed, Pseudolamprops profundus(Reyss, 1978) comb. nov., and several new records from the North Atlantic and Antarctica are provided. The diagnosis of Pseudolamprops is revised on the account of the new material available.


2018 ◽  
Author(s):  
James W. B. Rae ◽  
Wally Broecker

Abstract. In this contribution we explore constraints on the fractions of deep water present in Indian and Pacific Oceans which originated in the northern Atlantic and in the Southern Ocean. Based on PO4* we show that if ventilated Antarctic shelf waters characterize the Southern contribution, then the proportions are close to 50–50. If instead a Southern Ocean bottom water value is used, the Southern contribution is increased to 75 %. While this larger estimate may characterize the volume of water entering the Indo-Pacific from the Southern Ocean, it contains a significant portion of entrained northern water. We also note that ventilation may be highly tracer dependent: for instance Southern Ocean waters may contribute only 35 % of the deep radiocarbon budget, even if their volumetric contribution is 75 %. In our estimation, the most promising approaches involve using CFC-11 to constrain the amount of deep water formed in the Southern Ocean.


Sign in / Sign up

Export Citation Format

Share Document